Compare commits

..

79 Commits

Author SHA1 Message Date
KRSHH d8a5cdbc19
removed comment from requirements.txt 2025-01-03 19:21:39 +05:30
Kenneth Estanislao 6219da4b1b
Update README.md 2025-01-03 21:12:07 +08:00
Kenneth Estanislao 22e1110ec4
Merge pull request #862 from kier007/main
Update requirements.txt for CUDA 12.1 compatibility
2025-01-03 21:07:32 +08:00
Makaru 82d5d34912
Update requirements.txt 2025-01-03 20:42:38 +08:00
Makaru 60e82ea200
Update requirements.txt 2025-01-03 20:26:54 +08:00
KRSHH 8be7368949
Added URL to official website 2024-12-30 15:51:46 +05:30
KRSHH 5003c04386 Added IShowSpeed's Testimonial 2024-12-29 22:00:25 +05:30
KRSHH a50ea98bc2
Fixed Sentence Formatting 2024-12-29 03:14:02 +05:30
KRSHH 6a9bf2acfb
Deleted unused MP4 Demo 2024-12-29 03:11:41 +05:30
KRSHH 395cecf11d
Features Header Change 2024-12-29 03:08:42 +05:30
KRSHH ebf4e95c3a
Readme Changes 2024-12-29 03:07:31 +05:30
KRSHH 5974ba2a68
Fix Grammar 2024-12-29 03:06:10 +05:30
KRSHH 75c53ac7aa Readme Changes 2024-12-29 03:02:54 +05:30
KRSHH 8aeb406ea2
Rename run-laptop-gpu.bat to run-directml.bat 2024-12-26 20:38:01 +05:30
KRSHH 8b3bd734cf
Delete run_with_chocolatey.bat 2024-12-26 20:35:09 +05:30
KRSHH b0aac8bd04
Merge pull request #851 from mehdico/mouth-mask-arg
Added the --mouth-mask argument to the CLI
2024-12-26 20:30:48 +05:30
KRSHH 9dc3c3e9c2
Merge pull request #854 from hacksider/premain
Make main up to date with premain branch
2024-12-26 20:16:34 +05:30
KRSHH 21989d4a49
Added PR checklist 2024-12-26 20:15:51 +05:30
KRSHH b97185d2bf
Merge branch 'main' into premain 2024-12-26 20:07:26 +05:30
Mehdi Mousavi 81da9a23ca Fix mouth mask description 2024-12-24 09:51:32 +03:30
Mehdi Mousavi 007867a6f6 Add support for --mouth-mask argument 2024-12-24 09:40:06 +03:30
KRSHH 7ec9d61608
Removed default limits
User should add limits according their needs
2024-12-24 01:26:20 +05:30
KRSHH eeff1a87fa
Remove Unused Directory and Images 2024-12-24 01:23:50 +05:30
KRSHH bc1149cd80
Remove Unused Directory and Images 2024-12-24 01:23:24 +05:30
KRSHH 11c10b354f
docs: changed testing branch to premain 2024-12-24 00:45:57 +05:30
KRSHH 71aae3fe07
docs: changed testing branch to premain 2024-12-24 00:42:12 +05:30
KRSHH b995eca033
Update premain
updating premain
2024-12-24 00:36:59 +05:30
KRSHH b17e52dea2
Mac Webcam Serial No. Management 2024-12-23 22:45:41 +05:30
Kenneth Estanislao 3a858847e3
Merge pull request #846 from pedrodanielsantos/main
Fix "Update face_enhancer.py"
2024-12-23 17:45:10 +08:00
KRSHH 77c19d1073 FaceTime Camera Index to 0 2024-12-23 14:58:43 +05:30
Pedro Santos 7472dfb694 fix: add match statement
Added for optimization

Co-Authored-By: Zephira <zephira58@protonmail.com>
2024-12-23 06:29:36 +00:00
Pedro Santos 41c6916273 Revert "Update face_enhancer.py"
This reverts commit ed7a21687c.
2024-12-23 06:08:45 +00:00
Kenneth Estanislao ed7a21687c Update face_enhancer.py
change if from before statement to elif, also fix conditional ladder
2024-12-23 12:45:53 +08:00
KRSHH 5ce991651d Formatting
Moved Windows only modules, to top too.
2024-12-23 09:46:59 +05:30
KRSHH 432984b3b6 Mac Fix
Pygrabber Module import only on windows
2024-12-23 09:41:17 +05:30
KRSHH 47c8f7acc0
PR #844 - Pygrabber + Mac fix
Pygrabber + Mac fix
2024-12-22 18:34:32 +05:30
KRSHH 606137c58f
Merge branch 'main' into premain 2024-12-22 18:32:38 +05:30
KRSHH 76b94ac034
Changed Metadata to GitHub Edition 2024-12-22 18:28:38 +05:30
KRSHH 84ca1dc2f2 Make Face Enhancer Model device Conditional
Added Co-Author

Co-Authored-By: Rishon <rishon@rishon.me>
2024-12-19 21:18:28 +05:30
KRSHH 681c20dbbd Revert "Make Face Enhancer Model device Conditional"
This reverts commit c240f6e31c.
2024-12-19 21:16:56 +05:30
KRSHH c240f6e31c Make Face Enhancer Model device Conditional 2024-12-19 21:12:57 +05:30
Kenneth Estanislao ba9d58e04e
Update metadata.py 2024-12-19 13:08:25 +08:00
KRSHH 4bb979faf0
Update metadata.py 2024-12-18 22:45:58 +05:30
KRSHH eae69c4b47
Removed bat file 2024-12-18 22:45:28 +05:30
KRSHH f7823906d1
Update metadata.py 2024-12-18 22:44:20 +05:30
Kenneth Estanislao a1d9b73742 Revert "Merge pull request #829 from RishonLi/patch-1"
This reverts commit 5f5fe8890a, reversing
changes made to a9e8f27360.
2024-12-16 22:46:39 +08:00
Kenneth Estanislao 5f5fe8890a
Merge pull request #829 from RishonLi/patch-1
Update face_enhancer.py for apple silicon mps
2024-12-16 22:30:50 +08:00
KRSHH a9e8f27360 Pygrabber only for Windows 2024-12-16 18:41:39 +05:30
Rishon de4f765878
Update face_enhancer.py for apple silicon mps 2024-12-14 16:47:07 +08:00
KRSHH c72582506d Adding Pygrabber as Cam manager 2024-12-13 19:49:11 +05:30
KRSHH 7fb6b54c0b
Add Pygrabber 2024-12-13 19:05:38 +05:30
KRSHH d6236a0eed
Update README.md 2024-11-30 23:37:38 +05:30
KRSHH 6171141505
Detection Benchmarks 2024-11-17 23:53:04 +05:30
KRSHH 08adb53b8f
Add files via upload 2024-11-17 23:48:38 +05:30
Kenneth Estanislao 9e5446582e Merge branch 'main' of https://github.com/hacksider/Deep-Live-Cam 2024-11-17 22:24:04 +08:00
Kenneth Estanislao b9c7c0db6f Update .gitignore 2024-11-17 21:52:41 +08:00
Kenneth Estanislao cab8b9afcb
Update README.md 2024-11-14 19:47:35 +08:00
Kenneth Estanislao 4d8ba6396a
Merge pull request #773 from NeuroDonu/main
fix for GfpGAN and inswapper model path retrieval bug
2024-11-12 13:21:34 +08:00
NeuroDonu e4761e4d66
fix path for download and use model 2024-11-09 16:43:35 +03:00
NeuroDonu a840986159
fix path for model 2024-11-09 16:43:13 +03:00
KRSHH 4874282642
Making issue template mandatory 2024-11-08 23:21:30 +05:30
KRSHH 71c33437fc
Update bug_report.md 2024-11-02 12:59:33 +05:30
KRSHH a39b2e8d81
Update bug_report.md 2024-11-01 10:31:44 +05:30
KRSHH a7e775f918
Removed Link of a disabled repo
For avoiding ToS violation strike on this
2024-10-30 18:05:42 +05:30
KRSHH 5919995fa1
Update bug_report.md
Added this because of too many amateurs not following the obvious common steps before opening an issue.
2024-10-30 11:41:24 +05:30
Kenneth Estanislao 8746c9bd36 Update metadata.py
1.7
2024-10-30 00:25:06 +08:00
KRSHH 6a9ac5b70a
Merge pull request #743 from theogbob/patch-1
Fix ui.py
2024-10-27 10:33:53 +05:30
theogbob 916c2f82d8
Fix ui.py
Add command to "mouth_mask": modules.globals.mouth_mask which fixes the error "SyntaxError: invalid syntax. Perhaps you forgot a comma?"
2024-10-26 14:40:03 -04:00
KRSHH 80f6ea9e65
Save Mouth Mask Switch states 2024-10-26 17:54:45 +05:30
Kenneth Estanislao 9e24281a94
Delete media/mouth.gif 2024-10-26 14:32:16 +08:00
Kenneth Estanislao 82b527487a
Update README.md
ohhh... bad example during political times 😝
2024-10-26 14:31:24 +08:00
Kenneth Estanislao abde84ea57
Merge pull request #740 from KRSHH/main
BOUNTY: Mouth Mask Feature
2024-10-26 14:12:20 +08:00
KRSHH c599bb3e34 Mouth Masking Example 2024-10-25 22:47:53 +05:30
KRSHH 39db53abd6
Update README.md
Describes better.
2024-10-25 21:34:52 +05:30
KRSHH 29c9c119d3 Add Mouth Mask Feature 2024-10-25 20:59:30 +05:30
KRSHH fad626e84c Revert "Implement mouth mask"
This reverts commit 5ef255c3c3.
2024-10-25 20:55:21 +05:30
KRSHH 5ef255c3c3 Implement mouth mask 2024-10-25 20:53:31 +05:30
KRSHH 6f6f93a4ad
Added Links to Models in Instructions 2024-10-22 18:16:10 +05:30
KRSHH c75f941716
Removed Package Repetition 2024-10-22 17:24:06 +05:30
32 changed files with 934 additions and 467 deletions

View File

@ -1,38 +1,26 @@
---
name: Bug report
about: Create a report to help us improve
title: ''
labels: ''
assignees: ''
---
***[Remove this]The issue would be closed without notice and be considered spam if the template is not followed.***
**Describe the bug**
A clear and concise description of what the bug is.
**To Reproduce**
Steps to reproduce the behavior:
1. Go to '...'
2. Click on '....'
3. Scroll down to '....'
4. See error
**Expected behavior**
A clear and concise description of what you expected to happen.
**Screenshots**
If applicable, add screenshots to help explain your problem.
**Desktop (please complete the following information):**
- OS: [e.g. iOS]
- Browser [e.g. chrome, safari]
- Version [e.g. 22]
**Error Message**
**Smartphone (please complete the following information):**
- Device: [e.g. iPhone6]
- OS: [e.g. iOS8.1]
- Browser [e.g. stock browser, safari]
`<The error message in terminal>`
**Desktop (please complete the following information):**
- OS: [e.g. Windows]
- Version [e.g. 22]
- GPU
- CPU
**Additional context**
Add any other context about the problem here.
**Confirmation (Mandatory)**
- [ ] I have followed the template
- [ ] This is not a query about how to increase performance
- [ ] I have checked the issues page, and this is not a duplicate

1
.gitignore vendored
View File

@ -24,3 +24,4 @@ models/GFPGANv1.4.pth
models/DMDNet.pth
faceswap/
.vscode/
switch_states.json

View File

@ -1 +1,38 @@
Please always push on the experimental to ensure we don't mess with the main branch. All the test will be done on the experimental and will be pushed to the main branch after few days of testing.
# Collaboration Guidelines and Codebase Quality Standards
To ensure smooth collaboration and maintain the high quality of our codebase, please adhere to the following guidelines:
## Branching Strategy
* **`premain`**:
* Always push your changes to the `premain` branch initially.
* This safeguards the `main` branch from unintentional disruptions.
* All tests will be performed on the `premain` branch.
* Changes will only be merged into `main` after several hours or days of rigorous testing.
* **`experimental`**:
* For large or potentially disruptive changes, use the `experimental` branch.
* This allows for thorough discussion and review before considering a merge into `main`.
## Pre-Pull Request Checklist
Before creating a Pull Request (PR), ensure you have completed the following tests:
### Functionality
* **Realtime Faceswap**:
* Test with face enhancer **enabled** and **disabled**.
* **Map Faces**:
* Test with both options (**enabled** and **disabled**).
* **Camera Listing**:
* Verify that all cameras are listed accurately.
### Stability
* **Realtime FPS**:
* Confirm that there is no drop in real-time frames per second (FPS).
* **Boot Time**:
* Changes should not negatively impact the boot time of either the application or the real-time faceswap feature.
* **GPU Overloading**:
* Test for a minimum of 15 minutes to guarantee no GPU overloading, which could lead to crashes.
* **App Performance**:
* The application should remain responsive and not exhibit any lag.

246
README.md
View File

@ -4,11 +4,16 @@
Real-time face swap and video deepfake with a single click and only a single image.
</p>
<p align="center">
<a href="https://trendshift.io/repositories/11395" target="_blank"><img src="https://trendshift.io/api/badge/repositories/11395" alt="hacksider%2FDeep-Live-Cam | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</p>
<p align="center">
<img src="media/demo.gif" alt="Demo GIF">
<img src="media/avgpcperformancedemo.gif" alt="Performance Demo GIF">
</p>
## Disclaimer
This software is intended as a productive contribution to the AI-generated media industry. It aims to assist artists with tasks like animating custom characters or using them as models for clothing, etc.
@ -22,11 +27,15 @@ Users are expected to use this software responsibly and legally. If using a real
[![Download](media/download.png)](https://hacksider.gumroad.com/l/vccdmm)
[Download latest pre-built version with CUDA support](https://hacksider.gumroad.com/l/vccdmm) - No Manual Installation/Downloading required.
[Download latest pre-built version with CUDA support](https://hacksider.gumroad.com/l/vccdmm) - No Manual Installation/Downloading required and Early features testing.
## Installation (Manual)
**Please be aware that the installation needs technical skills and is NOT for beginners, consider downloading the prebuilt. Please do NOT open platform and installation related issues on GitHub before discussing it on the discord server.**
### Basic Installation (CPU)
**Please be aware that the installation needs technical skills and is not for beginners, consider downloading the prebuilt.**
<details>
<summary>Click to see the process</summary>
### Installation
This is more likely to work on your computer but will be slower as it utilizes the CPU.
@ -68,14 +77,11 @@ brew install python-tk@3.10
**Run:** If you don't have a GPU, you can run Deep-Live-Cam using `python run.py`. Note that initial execution will download models (~300MB).
### GPU Acceleration (Optional)
<details>
<summary>Click to see the details</summary>
### GPU Acceleration
**CUDA Execution Provider (Nvidia)**
1. Install [CUDA Toolkit 11.8](https://developer.nvidia.com/cuda-11-8-0-download-archive)
1. Install [CUDA Toolkit 11.8](https://developer.nvidia.com/cuda-11-8-0-download-archive) or [CUDA Toolkit 12.1.1](https://developer.nvidia.com/cuda-12-1-1-download-archive)
2. Install dependencies:
```bash
pip uninstall onnxruntime onnxruntime-gpu
@ -155,45 +161,34 @@ python run.py --execution-provider openvino
- Use a screen capture tool like OBS to stream.
- To change the face, select a new source image.
![demo-gif](media/demo.gif)
## Features - Everything is realtime
## Features
### Mouth Mask
### Resizable Preview Window
**Retain your original mouth using Mouth Mask**
Dynamically improve performance using the `--live-resizable` parameter.
![resizable-gif](media/resizable.gif)
![resizable-gif](media/ludwig.gif)
### Face Mapping
Track and change faces on the fly.
**Use different faces on multiple subjects**
![face_mapping_source](media/face_mapping_source.gif)
![face_mapping_source](media/streamers.gif)
**Source Video:**
### Your Movie, Your Face
![face-mapping](media/face_mapping.png)
**Enable Face Mapping:**
![face-mapping2](media/face_mapping2.png)
**Map the Faces:**
![face_mapping_result](media/face_mapping_result.gif)
**See the Magic!**
**Watch movies with any face in realtime**
![movie](media/movie.gif)
**Watch movies in realtime:**
It's as simple as opening a movie on the screen, and selecting OBS as your camera!
![image](media/movie_img.png)
## Benchmarks
**Nearly 0% detection!**
## Command Line Arguments
![bench](media/deepwarebench.gif)
## Command Line Arguments (Unmaintained)
```
options:
@ -207,6 +202,7 @@ options:
--keep-frames keep temporary frames
--many-faces process every face
--map-faces map source target faces
--mouth-mask mask the mouth region
--nsfw-filter filter the NSFW image or video
--video-encoder {libx264,libx265,libvpx-vp9} adjust output video encoder
--video-quality [0-51] adjust output video quality
@ -221,170 +217,21 @@ options:
Looking for a CLI mode? Using the -s/--source argument will make the run program in cli mode.
## Webcam Mode on WSL2 Ubuntu (Optional)
## Press
**We are always open to criticism and ready to improve, that's why we didn't cherrypick anything.**
<details>
<summary>Click to see the details</summary>
If you want to use WSL2 on Windows 11 you will notice, that Ubuntu WSL2 doesn't come with USB-Webcam support in the Kernel. You need to do two things: Compile the Kernel with the right modules integrated and forward your USB Webcam from Windows to Ubuntu with the usbipd app. Here are detailed Steps:
This tutorial will guide you through the process of setting up WSL2 Ubuntu with USB webcam support, rebuilding the kernel, and preparing the environment for the Deep-Live-Cam project.
**1. Install WSL2 Ubuntu**
Install WSL2 Ubuntu from the Microsoft Store or using PowerShell:
**2. Enable USB Support in WSL2**
1. Install the USB/IP tool for Windows:
[https://learn.microsoft.com/en-us/windows/wsl/connect-usb](https://learn.microsoft.com/en-us/windows/wsl/connect-usb)
2. In Windows PowerShell (as Administrator), connect your webcam to WSL:
```powershell
usbipd list
usbipd bind --busid x-x # Replace x-x with your webcam's bus ID
usbipd attach --wsl --busid x-x # Replace x-x with your webcam's bus ID
```
You need to redo the above every time you reboot wsl or re-connect your webcam/usb device.
**3. Rebuild WSL2 Ubuntu Kernel with USB and Webcam Modules**
Follow these steps to rebuild the kernel:
1. Start with this guide: [https://github.com/PINTO0309/wsl2_linux_kernel_usbcam_enable_conf](https://github.com/PINTO0309/wsl2_linux_kernel_usbcam_enable_conf)
2. When you reach the `sudo wget [github.com](http://github.com/)...PINTO0309` step, which won't work for newer kernel versions, follow this video instead or alternatively follow the video tutorial from the beginning:
[https://www.youtube.com/watch?v=t_YnACEPmrM](https://www.youtube.com/watch?v=t_YnACEPmrM)
Additional info: [https://askubuntu.com/questions/1413377/camera-not-working-in-cheese-in-wsl2](https://askubuntu.com/questions/1413377/camera-not-working-in-cheese-in-wsl2)
3. After rebuilding, restart WSL with the new kernel.
**4. Set Up Deep-Live-Cam Project**
Within Ubuntu:
1. Clone the repository:
```bash
git clone [https://github.com/hacksider/Deep-Live-Cam](https://github.com/hacksider/Deep-Live-Cam)
```
2. Follow the installation instructions in the repository, including cuda toolkit 11.8, make 100% sure it's not cuda toolkit 12.x.
**5. Verify and Load Kernel Modules**
1. Check if USB and webcam modules are built into the kernel:
```bash
zcat /proc/config.gz | grep -i "CONFIG_USB_VIDEO_CLASS"
```
2. If modules are loadable (m), not built-in (y), check if the file exists:
```bash
ls /lib/modules/$(uname -r)/kernel/drivers/media/usb/uvc/
```
3. Load the module and check for errors (optional if built-in):
```bash
sudo modprobe uvcvideo
dmesg | tail
```
4. Verify video devices:
```bash
sudo ls -al /dev/video*
```
**6. Set Up Permissions**
1. Add user to video group and set permissions:
```bash
sudo usermod -a -G video $USER
sudo chgrp video /dev/video0 /dev/video1
sudo chmod 660 /dev/video0 /dev/video1
```
2. Create a udev rule for permanent permissions:
```bash
sudo nano /etc/udev/rules.d/81-webcam.rules
```
Add this content:
```
KERNEL=="video[0-9]*", GROUP="video", MODE="0660"
```
3. Reload udev rules:
```bash
sudo udevadm control --reload-rules && sudo udevadm trigger
```
4. Log out and log back into your WSL session.
5. Start Deep-Live-Cam with `python run.py --execution-provider cuda --max-memory 8` where 8 can be changed to the number of GB VRAM of your GPU has, minus 1-2GB. If you have a RTX3080 with 10GB I suggest adding 8GB. Leave some left for Windows.
**Final Notes**
- Steps 6 and 7 may be optional if the modules are built into the kernel and permissions are already set correctly.
- Always ensure you're using compatible versions of CUDA, ONNX, and other dependencies.
- If issues persist, consider checking the Deep-Live-Cam project's specific requirements and troubleshooting steps.
By following these steps, you should have a WSL2 Ubuntu environment with USB webcam support ready for the Deep-Live-Cam project. If you encounter any issues, refer back to the specific error messages and troubleshooting steps provided.
**Troubleshooting CUDA Issues**
If you encounter this error:
```
[ONNXRuntimeError] : 1 : FAIL : Failed to load library [libonnxruntime_providers_cuda.so](http://libonnxruntime_providers_cuda.so/) with error: libcufft.so.10: cannot open shared object file: No such file or directory
```
Follow these steps:
1. Install CUDA Toolkit 11.8 (ONNX 1.16.3 requires CUDA 11.x, not 12.x):
[https://developer.nvidia.com/cuda-11-8-0-download-archive](https://developer.nvidia.com/cuda-11-8-0-download-archive)
select: Linux, x86_64, WSL-Ubuntu, 2.0, deb (local)
2. Check CUDA version:
```bash
/usr/local/cuda/bin/nvcc --version
```
3. If the wrong version is installed, remove it completely:
[https://askubuntu.com/questions/530043/removing-nvidia-cuda-toolkit-and-installing-new-one](https://askubuntu.com/questions/530043/removing-nvidia-cuda-toolkit-and-installing-new-one)
4. Install CUDA Toolkit 11.8 again [https://developer.nvidia.com/cuda-11-8-0-download-archive](https://developer.nvidia.com/cuda-11-8-0-download-archive), select: Linux, x86_64, WSL-Ubuntu, 2.0, deb (local)
```bash
sudo apt-get -y install cuda-toolkit-11-8
```
</details>
## Future Updates & Roadmap
For the latest experimental builds and features, see the [experimental branch](https://github.com/hacksider/Deep-Live-Cam/tree/experimental).
**TODO:**
- [ ] Develop a version for web app/service
- [ ] Speed up model loading
- [ ] Speed up real-time face swapping
- [x] Support multiple faces
- [x] UI/UX enhancements for desktop app
This is an open-source project developed in our free time. Updates may be delayed.
**Tips and Links:**
- [How to make the most of Deep-Live-Cam](https://hacksider.gumroad.com/p/how-to-make-the-most-on-deep-live-cam)
- Face enhancer is good, but still very slow for any live streaming purpose.
- [*"Deep-Live-Cam goes viral, allowing anyone to become a digital doppelganger"*](https://arstechnica.com/information-technology/2024/08/new-ai-tool-enables-real-time-face-swapping-on-webcams-raising-fraud-concerns/) - Ars Technica
- [*"Thanks Deep Live Cam, shapeshifters are among us now"*](https://dataconomy.com/2024/08/15/what-is-deep-live-cam-github-deepfake/) - Dataconomy
- [*"This free AI tool lets you become anyone during video-calls"*](https://www.newsbytesapp.com/news/science/deep-live-cam-ai-impersonation-tool-goes-viral/story) - NewsBytes
- [*"OK, this viral AI live stream software is truly terrifying"*](https://www.creativebloq.com/ai/ok-this-viral-ai-live-stream-software-is-truly-terrifying) - Creative Bloq
- [*"Deepfake AI Tool Lets You Become Anyone in a Video Call With Single Photo"*](https://petapixel.com/2024/08/14/deep-live-cam-deepfake-ai-tool-lets-you-become-anyone-in-a-video-call-with-single-photo-mark-zuckerberg-jd-vance-elon-musk/) - PetaPixel
- [*"Deep-Live-Cam Uses AI to Transform Your Face in Real-Time, Celebrities Included"*](https://www.techeblog.com/deep-live-cam-ai-transform-face/) - TechEBlog
- [*"An AI tool that "makes you look like anyone" during a video call is going viral online"*](https://telegrafi.com/en/a-tool-that-makes-you-look-like-anyone-during-a-video-call-is-going-viral-on-the-Internet/) - Telegrafi
- [*"This Deepfake Tool Turning Images Into Livestreams is Topping the GitHub Charts"*](https://decrypt.co/244565/this-deepfake-tool-turning-images-into-livestreams-is-topping-the-github-charts) - Emerge
- [*"New Real-Time Face-Swapping AI Allows Anyone to Mimic Famous Faces"*](https://www.digitalmusicnews.com/2024/08/15/face-swapping-ai-real-time-mimic/) - Digital Music News
- [*"This real-time webcam deepfake tool raises alarms about the future of identity theft"*](https://www.diyphotography.net/this-real-time-webcam-deepfake-tool-raises-alarms-about-the-future-of-identity-theft/) - DIYPhotography
- [*"That's Crazy, Oh God. That's Fucking Freaky Dude... That's So Wild Dude"*](https://www.youtube.com/watch?time_continue=1074&v=py4Tc-Y8BcY) - SomeOrdinaryGamers
- [*"Alright look look look, now look chat, we can do any face we want to look like chat"*](https://www.youtube.com/live/mFsCe7AIxq8?feature=shared&t=2686) - IShowSpeed
## Credits
@ -395,13 +242,16 @@ This is an open-source project developed in our free time. Updates may be delaye
- [GosuDRM](https://github.com/GosuDRM) : for open version of roop
- [pereiraroland26](https://github.com/pereiraroland26) : Multiple faces support
- [vic4key](https://github.com/vic4key) : For supporting/contributing on this project
- [KRSHH](https://github.com/KRSHH) : For updating the UI
- [KRSHH](https://github.com/KRSHH) : For his contributions
- and [all developers](https://github.com/hacksider/Deep-Live-Cam/graphs/contributors) behind libraries used in this project.
- Foot Note: [This is originally roop-cam, see the full history of the code here.](https://github.com/hacksider/roop-cam) Please be informed that the base author of the code is [s0md3v](https://github.com/s0md3v/roop)
- Foot Note: Please be informed that the base author of the code is [s0md3v](https://github.com/s0md3v/roop)
- All the wonderful users who helped making this project go viral by starring the repo ❤️
[![Stargazers](https://reporoster.com/stars/hacksider/Deep-Live-Cam)](https://github.com/hacksider/Deep-Live-Cam/stargazers)
## Contributions
![Alt](https://repobeats.axiom.co/api/embed/fec8e29c45dfdb9c5916f3a7830e1249308d20e1.svg "Repobeats analytics image")
## Star History
## Stars to the Moon 🚀
<a href="https://star-history.com/#hacksider/deep-live-cam&Date">
<picture>

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.8 MiB

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 104 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.0 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 8.6 MiB

BIN
media/ludwig.gif 100644

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.3 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.6 MiB

After

Width:  |  Height:  |  Size: 14 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 794 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.3 MiB

BIN
media/streamers.gif 100644

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 MiB

View File

@ -1 +1,4 @@
just put the models in this folder
just put the models in this folder -
https://huggingface.co/hacksider/deep-live-cam/resolve/main/inswapper_128_fp16.onnx?download=true
https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/GFPGANv1.4.pth

View File

@ -41,6 +41,7 @@ def parse_args() -> None:
program.add_argument('--many-faces', help='process every face', dest='many_faces', action='store_true', default=False)
program.add_argument('--nsfw-filter', help='filter the NSFW image or video', dest='nsfw_filter', action='store_true', default=False)
program.add_argument('--map-faces', help='map source target faces', dest='map_faces', action='store_true', default=False)
program.add_argument('--mouth-mask', help='mask the mouth region', dest='mouth_mask', action='store_true', default=False)
program.add_argument('--video-encoder', help='adjust output video encoder', dest='video_encoder', default='libx264', choices=['libx264', 'libx265', 'libvpx-vp9'])
program.add_argument('--video-quality', help='adjust output video quality', dest='video_quality', type=int, default=18, choices=range(52), metavar='[0-51]')
program.add_argument('--live-mirror', help='The live camera display as you see it in the front-facing camera frame', dest='live_mirror', action='store_true', default=False)
@ -67,6 +68,7 @@ def parse_args() -> None:
modules.globals.keep_audio = args.keep_audio
modules.globals.keep_frames = args.keep_frames
modules.globals.many_faces = args.many_faces
modules.globals.mouth_mask = args.mouth_mask
modules.globals.nsfw_filter = args.nsfw_filter
modules.globals.map_faces = args.map_faces
modules.globals.video_encoder = args.video_encoder

View File

@ -26,7 +26,7 @@ nsfw_filter = False
video_encoder = None
video_quality = None
live_mirror = False
live_resizable = False
live_resizable = True
max_memory = None
execution_providers: List[str] = []
execution_threads = None
@ -36,3 +36,8 @@ fp_ui: Dict[str, bool] = {"face_enhancer": False}
camera_input_combobox = None
webcam_preview_running = False
show_fps = False
mouth_mask = False
show_mouth_mask_box = False
mask_feather_ratio = 8
mask_down_size = 0.50
mask_size = 1

View File

@ -1,3 +1,3 @@
name = 'Deep Live Cam'
version = '1.6.0'
edition = 'Portable'
name = 'Deep-Live-Cam'
version = '1.7.5'
edition = 'GitHub Edition'

View File

@ -9,9 +9,10 @@ import modules.processors.frame.core
from modules.core import update_status
from modules.face_analyser import get_one_face
from modules.typing import Frame, Face
import platform
import torch
from modules.utilities import (
conditional_download,
resolve_relative_path,
is_image,
is_video,
)
@ -21,9 +22,14 @@ THREAD_SEMAPHORE = threading.Semaphore()
THREAD_LOCK = threading.Lock()
NAME = "DLC.FACE-ENHANCER"
abs_dir = os.path.dirname(os.path.abspath(__file__))
models_dir = os.path.join(
os.path.dirname(os.path.dirname(os.path.dirname(abs_dir))), "models"
)
def pre_check() -> bool:
download_directory_path = resolve_relative_path("..\models")
download_directory_path = models_dir
conditional_download(
download_directory_path,
[
@ -47,12 +53,18 @@ def get_face_enhancer() -> Any:
with THREAD_LOCK:
if FACE_ENHANCER is None:
if os.name == "nt":
model_path = resolve_relative_path("..\models\GFPGANv1.4.pth")
# todo: set models path https://github.com/TencentARC/GFPGAN/issues/399
model_path = os.path.join(models_dir, "GFPGANv1.4.pth")
match platform.system():
case "Darwin": # Mac OS
if torch.backends.mps.is_available():
mps_device = torch.device("mps")
FACE_ENHANCER = gfpgan.GFPGANer(model_path=model_path, upscale=1, device=mps_device) # type: ignore[attr-defined]
else:
model_path = resolve_relative_path("../models/GFPGANv1.4.pth")
FACE_ENHANCER = gfpgan.GFPGANer(model_path=model_path, upscale=1) # type: ignore[attr-defined]
case _: # Other OS
FACE_ENHANCER = gfpgan.GFPGANer(model_path=model_path, upscale=1) # type: ignore[attr-defined]
return FACE_ENHANCER

View File

@ -2,35 +2,54 @@ from typing import Any, List
import cv2
import insightface
import threading
import numpy as np
import modules.globals
import modules.processors.frame.core
from modules.core import update_status
from modules.face_analyser import get_one_face, get_many_faces, default_source_face
from modules.typing import Face, Frame
from modules.utilities import conditional_download, resolve_relative_path, is_image, is_video
from modules.utilities import (
conditional_download,
is_image,
is_video,
)
from modules.cluster_analysis import find_closest_centroid
import os
FACE_SWAPPER = None
THREAD_LOCK = threading.Lock()
NAME = 'DLC.FACE-SWAPPER'
NAME = "DLC.FACE-SWAPPER"
abs_dir = os.path.dirname(os.path.abspath(__file__))
models_dir = os.path.join(
os.path.dirname(os.path.dirname(os.path.dirname(abs_dir))), "models"
)
def pre_check() -> bool:
download_directory_path = resolve_relative_path('../models')
conditional_download(download_directory_path, ['https://huggingface.co/hacksider/deep-live-cam/blob/main/inswapper_128_fp16.onnx'])
download_directory_path = abs_dir
conditional_download(
download_directory_path,
[
"https://huggingface.co/hacksider/deep-live-cam/blob/main/inswapper_128_fp16.onnx"
],
)
return True
def pre_start() -> bool:
if not modules.globals.map_faces and not is_image(modules.globals.source_path):
update_status('Select an image for source path.', NAME)
update_status("Select an image for source path.", NAME)
return False
elif not modules.globals.map_faces and not get_one_face(cv2.imread(modules.globals.source_path)):
update_status('No face in source path detected.', NAME)
elif not modules.globals.map_faces and not get_one_face(
cv2.imread(modules.globals.source_path)
):
update_status("No face in source path detected.", NAME)
return False
if not is_image(modules.globals.target_path) and not is_video(modules.globals.target_path):
update_status('Select an image or video for target path.', NAME)
if not is_image(modules.globals.target_path) and not is_video(
modules.globals.target_path
):
update_status("Select an image or video for target path.", NAME)
return False
return True
@ -40,17 +59,45 @@ def get_face_swapper() -> Any:
with THREAD_LOCK:
if FACE_SWAPPER is None:
model_path = resolve_relative_path('../models/inswapper_128_fp16.onnx')
FACE_SWAPPER = insightface.model_zoo.get_model(model_path, providers=modules.globals.execution_providers)
model_path = os.path.join(models_dir, "inswapper_128_fp16.onnx")
FACE_SWAPPER = insightface.model_zoo.get_model(
model_path, providers=modules.globals.execution_providers
)
return FACE_SWAPPER
def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
return get_face_swapper().get(temp_frame, target_face, source_face, paste_back=True)
face_swapper = get_face_swapper()
# Apply the face swap
swapped_frame = face_swapper.get(
temp_frame, target_face, source_face, paste_back=True
)
if modules.globals.mouth_mask:
# Create a mask for the target face
face_mask = create_face_mask(target_face, temp_frame)
# Create the mouth mask
mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon = (
create_lower_mouth_mask(target_face, temp_frame)
)
# Apply the mouth area
swapped_frame = apply_mouth_area(
swapped_frame, mouth_cutout, mouth_box, face_mask, lower_lip_polygon
)
if modules.globals.show_mouth_mask_box:
mouth_mask_data = (mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon)
swapped_frame = draw_mouth_mask_visualization(
swapped_frame, target_face, mouth_mask_data
)
return swapped_frame
def process_frame(source_face: Face, temp_frame: Frame) -> Frame:
# Ensure the frame is in RGB format if color correction is enabled
if modules.globals.color_correction:
temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
@ -71,35 +118,44 @@ def process_frame_v2(temp_frame: Frame, temp_frame_path: str = "") -> Frame:
if modules.globals.many_faces:
source_face = default_source_face()
for map in modules.globals.souce_target_map:
target_face = map['target']['face']
target_face = map["target"]["face"]
temp_frame = swap_face(source_face, target_face, temp_frame)
elif not modules.globals.many_faces:
for map in modules.globals.souce_target_map:
if "source" in map:
source_face = map['source']['face']
target_face = map['target']['face']
source_face = map["source"]["face"]
target_face = map["target"]["face"]
temp_frame = swap_face(source_face, target_face, temp_frame)
elif is_video(modules.globals.target_path):
if modules.globals.many_faces:
source_face = default_source_face()
for map in modules.globals.souce_target_map:
target_frame = [f for f in map['target_faces_in_frame'] if f['location'] == temp_frame_path]
target_frame = [
f
for f in map["target_faces_in_frame"]
if f["location"] == temp_frame_path
]
for frame in target_frame:
for target_face in frame['faces']:
for target_face in frame["faces"]:
temp_frame = swap_face(source_face, target_face, temp_frame)
elif not modules.globals.many_faces:
for map in modules.globals.souce_target_map:
if "source" in map:
target_frame = [f for f in map['target_faces_in_frame'] if f['location'] == temp_frame_path]
source_face = map['source']['face']
target_frame = [
f
for f in map["target_faces_in_frame"]
if f["location"] == temp_frame_path
]
source_face = map["source"]["face"]
for frame in target_frame:
for target_face in frame['faces']:
for target_face in frame["faces"]:
temp_frame = swap_face(source_face, target_face, temp_frame)
else:
detected_faces = get_many_faces(temp_frame)
if modules.globals.many_faces:
@ -110,25 +166,46 @@ def process_frame_v2(temp_frame: Frame, temp_frame_path: str = "") -> Frame:
elif not modules.globals.many_faces:
if detected_faces:
if len(detected_faces) <= len(modules.globals.simple_map['target_embeddings']):
if len(detected_faces) <= len(
modules.globals.simple_map["target_embeddings"]
):
for detected_face in detected_faces:
closest_centroid_index, _ = find_closest_centroid(modules.globals.simple_map['target_embeddings'], detected_face.normed_embedding)
closest_centroid_index, _ = find_closest_centroid(
modules.globals.simple_map["target_embeddings"],
detected_face.normed_embedding,
)
temp_frame = swap_face(modules.globals.simple_map['source_faces'][closest_centroid_index], detected_face, temp_frame)
temp_frame = swap_face(
modules.globals.simple_map["source_faces"][
closest_centroid_index
],
detected_face,
temp_frame,
)
else:
detected_faces_centroids = []
for face in detected_faces:
detected_faces_centroids.append(face.normed_embedding)
i = 0
for target_embedding in modules.globals.simple_map['target_embeddings']:
closest_centroid_index, _ = find_closest_centroid(detected_faces_centroids, target_embedding)
for target_embedding in modules.globals.simple_map[
"target_embeddings"
]:
closest_centroid_index, _ = find_closest_centroid(
detected_faces_centroids, target_embedding
)
temp_frame = swap_face(modules.globals.simple_map['source_faces'][i], detected_faces[closest_centroid_index], temp_frame)
temp_frame = swap_face(
modules.globals.simple_map["source_faces"][i],
detected_faces[closest_centroid_index],
temp_frame,
)
i += 1
return temp_frame
def process_frames(source_path: str, temp_frame_paths: List[str], progress: Any = None) -> None:
def process_frames(
source_path: str, temp_frame_paths: List[str], progress: Any = None
) -> None:
if not modules.globals.map_faces:
source_face = get_one_face(cv2.imread(source_path))
for temp_frame_path in temp_frame_paths:
@ -162,7 +239,9 @@ def process_image(source_path: str, target_path: str, output_path: str) -> None:
cv2.imwrite(output_path, result)
else:
if modules.globals.many_faces:
update_status('Many faces enabled. Using first source image. Progressing...', NAME)
update_status(
"Many faces enabled. Using first source image. Progressing...", NAME
)
target_frame = cv2.imread(output_path)
result = process_frame_v2(target_frame)
cv2.imwrite(output_path, result)
@ -170,5 +249,367 @@ def process_image(source_path: str, target_path: str, output_path: str) -> None:
def process_video(source_path: str, temp_frame_paths: List[str]) -> None:
if modules.globals.map_faces and modules.globals.many_faces:
update_status('Many faces enabled. Using first source image. Progressing...', NAME)
modules.processors.frame.core.process_video(source_path, temp_frame_paths, process_frames)
update_status(
"Many faces enabled. Using first source image. Progressing...", NAME
)
modules.processors.frame.core.process_video(
source_path, temp_frame_paths, process_frames
)
def create_lower_mouth_mask(
face: Face, frame: Frame
) -> (np.ndarray, np.ndarray, tuple, np.ndarray):
mask = np.zeros(frame.shape[:2], dtype=np.uint8)
mouth_cutout = None
landmarks = face.landmark_2d_106
if landmarks is not None:
# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
lower_lip_order = [
65,
66,
62,
70,
69,
18,
19,
20,
21,
22,
23,
24,
0,
8,
7,
6,
5,
4,
3,
2,
65,
]
lower_lip_landmarks = landmarks[lower_lip_order].astype(
np.float32
) # Use float for precise calculations
# Calculate the center of the landmarks
center = np.mean(lower_lip_landmarks, axis=0)
# Expand the landmarks outward
expansion_factor = (
1 + modules.globals.mask_down_size
) # Adjust this for more or less expansion
expanded_landmarks = (lower_lip_landmarks - center) * expansion_factor + center
# Extend the top lip part
toplip_indices = [
20,
0,
1,
2,
3,
4,
5,
] # Indices for landmarks 2, 65, 66, 62, 70, 69, 18
toplip_extension = (
modules.globals.mask_size * 0.5
) # Adjust this factor to control the extension
for idx in toplip_indices:
direction = expanded_landmarks[idx] - center
direction = direction / np.linalg.norm(direction)
expanded_landmarks[idx] += direction * toplip_extension
# Extend the bottom part (chin area)
chin_indices = [
11,
12,
13,
14,
15,
16,
] # Indices for landmarks 21, 22, 23, 24, 0, 8
chin_extension = 2 * 0.2 # Adjust this factor to control the extension
for idx in chin_indices:
expanded_landmarks[idx][1] += (
expanded_landmarks[idx][1] - center[1]
) * chin_extension
# Convert back to integer coordinates
expanded_landmarks = expanded_landmarks.astype(np.int32)
# Calculate bounding box for the expanded lower mouth
min_x, min_y = np.min(expanded_landmarks, axis=0)
max_x, max_y = np.max(expanded_landmarks, axis=0)
# Add some padding to the bounding box
padding = int((max_x - min_x) * 0.1) # 10% padding
min_x = max(0, min_x - padding)
min_y = max(0, min_y - padding)
max_x = min(frame.shape[1], max_x + padding)
max_y = min(frame.shape[0], max_y + padding)
# Ensure the bounding box dimensions are valid
if max_x <= min_x or max_y <= min_y:
if (max_x - min_x) <= 1:
max_x = min_x + 1
if (max_y - min_y) <= 1:
max_y = min_y + 1
# Create the mask
mask_roi = np.zeros((max_y - min_y, max_x - min_x), dtype=np.uint8)
cv2.fillPoly(mask_roi, [expanded_landmarks - [min_x, min_y]], 255)
# Apply Gaussian blur to soften the mask edges
mask_roi = cv2.GaussianBlur(mask_roi, (15, 15), 5)
# Place the mask ROI in the full-sized mask
mask[min_y:max_y, min_x:max_x] = mask_roi
# Extract the masked area from the frame
mouth_cutout = frame[min_y:max_y, min_x:max_x].copy()
# Return the expanded lower lip polygon in original frame coordinates
lower_lip_polygon = expanded_landmarks
return mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon
def draw_mouth_mask_visualization(
frame: Frame, face: Face, mouth_mask_data: tuple
) -> Frame:
landmarks = face.landmark_2d_106
if landmarks is not None and mouth_mask_data is not None:
mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon = (
mouth_mask_data
)
vis_frame = frame.copy()
# Ensure coordinates are within frame bounds
height, width = vis_frame.shape[:2]
min_x, min_y = max(0, min_x), max(0, min_y)
max_x, max_y = min(width, max_x), min(height, max_y)
# Adjust mask to match the region size
mask_region = mask[0 : max_y - min_y, 0 : max_x - min_x]
# Remove the color mask overlay
# color_mask = cv2.applyColorMap((mask_region * 255).astype(np.uint8), cv2.COLORMAP_JET)
# Ensure shapes match before blending
vis_region = vis_frame[min_y:max_y, min_x:max_x]
# Remove blending with color_mask
# if vis_region.shape[:2] == color_mask.shape[:2]:
# blended = cv2.addWeighted(vis_region, 0.7, color_mask, 0.3, 0)
# vis_frame[min_y:max_y, min_x:max_x] = blended
# Draw the lower lip polygon
cv2.polylines(vis_frame, [lower_lip_polygon], True, (0, 255, 0), 2)
# Remove the red box
# cv2.rectangle(vis_frame, (min_x, min_y), (max_x, max_y), (0, 0, 255), 2)
# Visualize the feathered mask
feather_amount = max(
1,
min(
30,
(max_x - min_x) // modules.globals.mask_feather_ratio,
(max_y - min_y) // modules.globals.mask_feather_ratio,
),
)
# Ensure kernel size is odd
kernel_size = 2 * feather_amount + 1
feathered_mask = cv2.GaussianBlur(
mask_region.astype(float), (kernel_size, kernel_size), 0
)
feathered_mask = (feathered_mask / feathered_mask.max() * 255).astype(np.uint8)
# Remove the feathered mask color overlay
# color_feathered_mask = cv2.applyColorMap(feathered_mask, cv2.COLORMAP_VIRIDIS)
# Ensure shapes match before blending feathered mask
# if vis_region.shape == color_feathered_mask.shape:
# blended_feathered = cv2.addWeighted(vis_region, 0.7, color_feathered_mask, 0.3, 0)
# vis_frame[min_y:max_y, min_x:max_x] = blended_feathered
# Add labels
cv2.putText(
vis_frame,
"Lower Mouth Mask",
(min_x, min_y - 10),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(255, 255, 255),
1,
)
cv2.putText(
vis_frame,
"Feathered Mask",
(min_x, max_y + 20),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(255, 255, 255),
1,
)
return vis_frame
return frame
def apply_mouth_area(
frame: np.ndarray,
mouth_cutout: np.ndarray,
mouth_box: tuple,
face_mask: np.ndarray,
mouth_polygon: np.ndarray,
) -> np.ndarray:
min_x, min_y, max_x, max_y = mouth_box
box_width = max_x - min_x
box_height = max_y - min_y
if (
mouth_cutout is None
or box_width is None
or box_height is None
or face_mask is None
or mouth_polygon is None
):
return frame
try:
resized_mouth_cutout = cv2.resize(mouth_cutout, (box_width, box_height))
roi = frame[min_y:max_y, min_x:max_x]
if roi.shape != resized_mouth_cutout.shape:
resized_mouth_cutout = cv2.resize(
resized_mouth_cutout, (roi.shape[1], roi.shape[0])
)
color_corrected_mouth = apply_color_transfer(resized_mouth_cutout, roi)
# Use the provided mouth polygon to create the mask
polygon_mask = np.zeros(roi.shape[:2], dtype=np.uint8)
adjusted_polygon = mouth_polygon - [min_x, min_y]
cv2.fillPoly(polygon_mask, [adjusted_polygon], 255)
# Apply feathering to the polygon mask
feather_amount = min(
30,
box_width // modules.globals.mask_feather_ratio,
box_height // modules.globals.mask_feather_ratio,
)
feathered_mask = cv2.GaussianBlur(
polygon_mask.astype(float), (0, 0), feather_amount
)
feathered_mask = feathered_mask / feathered_mask.max()
face_mask_roi = face_mask[min_y:max_y, min_x:max_x]
combined_mask = feathered_mask * (face_mask_roi / 255.0)
combined_mask = combined_mask[:, :, np.newaxis]
blended = (
color_corrected_mouth * combined_mask + roi * (1 - combined_mask)
).astype(np.uint8)
# Apply face mask to blended result
face_mask_3channel = (
np.repeat(face_mask_roi[:, :, np.newaxis], 3, axis=2) / 255.0
)
final_blend = blended * face_mask_3channel + roi * (1 - face_mask_3channel)
frame[min_y:max_y, min_x:max_x] = final_blend.astype(np.uint8)
except Exception as e:
pass
return frame
def create_face_mask(face: Face, frame: Frame) -> np.ndarray:
mask = np.zeros(frame.shape[:2], dtype=np.uint8)
landmarks = face.landmark_2d_106
if landmarks is not None:
# Convert landmarks to int32
landmarks = landmarks.astype(np.int32)
# Extract facial features
right_side_face = landmarks[0:16]
left_side_face = landmarks[17:32]
right_eye = landmarks[33:42]
right_eye_brow = landmarks[43:51]
left_eye = landmarks[87:96]
left_eye_brow = landmarks[97:105]
# Calculate forehead extension
right_eyebrow_top = np.min(right_eye_brow[:, 1])
left_eyebrow_top = np.min(left_eye_brow[:, 1])
eyebrow_top = min(right_eyebrow_top, left_eyebrow_top)
face_top = np.min([right_side_face[0, 1], left_side_face[-1, 1]])
forehead_height = face_top - eyebrow_top
extended_forehead_height = int(forehead_height * 5.0) # Extend by 50%
# Create forehead points
forehead_left = right_side_face[0].copy()
forehead_right = left_side_face[-1].copy()
forehead_left[1] -= extended_forehead_height
forehead_right[1] -= extended_forehead_height
# Combine all points to create the face outline
face_outline = np.vstack(
[
[forehead_left],
right_side_face,
left_side_face[
::-1
], # Reverse left side to create a continuous outline
[forehead_right],
]
)
# Calculate padding
padding = int(
np.linalg.norm(right_side_face[0] - left_side_face[-1]) * 0.05
) # 5% of face width
# Create a slightly larger convex hull for padding
hull = cv2.convexHull(face_outline)
hull_padded = []
for point in hull:
x, y = point[0]
center = np.mean(face_outline, axis=0)
direction = np.array([x, y]) - center
direction = direction / np.linalg.norm(direction)
padded_point = np.array([x, y]) + direction * padding
hull_padded.append(padded_point)
hull_padded = np.array(hull_padded, dtype=np.int32)
# Fill the padded convex hull
cv2.fillConvexPoly(mask, hull_padded, 255)
# Smooth the mask edges
mask = cv2.GaussianBlur(mask, (5, 5), 3)
return mask
def apply_color_transfer(source, target):
"""
Apply color transfer from target to source image
"""
source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype("float32")
target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype("float32")
source_mean, source_std = cv2.meanStdDev(source)
target_mean, target_std = cv2.meanStdDev(target)
# Reshape mean and std to be broadcastable
source_mean = source_mean.reshape(1, 1, 3)
source_std = source_std.reshape(1, 1, 3)
target_mean = target_mean.reshape(1, 1, 3)
target_std = target_std.reshape(1, 1, 3)
# Perform the color transfer
source = (source - source_mean) * (target_std / source_std) + target_mean
return cv2.cvtColor(np.clip(source, 0, 255).astype("uint8"), cv2.COLOR_LAB2BGR)

View File

@ -7,7 +7,6 @@ from cv2_enumerate_cameras import enumerate_cameras # Add this import
from PIL import Image, ImageOps
import time
import json
import modules.globals
import modules.metadata
from modules.face_analyser import (
@ -26,6 +25,11 @@ from modules.utilities import (
resolve_relative_path,
has_image_extension,
)
from modules.video_capture import VideoCapturer
import platform
if platform.system() == "Windows":
from pygrabber.dshow_graph import FilterGraph
ROOT = None
POPUP = None
@ -95,6 +99,8 @@ def save_switch_states():
"live_resizable": modules.globals.live_resizable,
"fp_ui": modules.globals.fp_ui,
"show_fps": modules.globals.show_fps,
"mouth_mask": modules.globals.mouth_mask,
"show_mouth_mask_box": modules.globals.show_mouth_mask_box,
}
with open("switch_states.json", "w") as f:
json.dump(switch_states, f)
@ -115,6 +121,10 @@ def load_switch_states():
modules.globals.live_resizable = switch_states.get("live_resizable", False)
modules.globals.fp_ui = switch_states.get("fp_ui", {"face_enhancer": False})
modules.globals.show_fps = switch_states.get("show_fps", False)
modules.globals.mouth_mask = switch_states.get("mouth_mask", False)
modules.globals.show_mouth_mask_box = switch_states.get(
"show_mouth_mask_box", False
)
except FileNotFoundError:
# If the file doesn't exist, use default values
pass
@ -269,6 +279,28 @@ def create_root(start: Callable[[], None], destroy: Callable[[], None]) -> ctk.C
)
show_fps_switch.place(relx=0.6, rely=0.75)
mouth_mask_var = ctk.BooleanVar(value=modules.globals.mouth_mask)
mouth_mask_switch = ctk.CTkSwitch(
root,
text="Mouth Mask",
variable=mouth_mask_var,
cursor="hand2",
command=lambda: setattr(modules.globals, "mouth_mask", mouth_mask_var.get()),
)
mouth_mask_switch.place(relx=0.1, rely=0.55)
show_mouth_mask_box_var = ctk.BooleanVar(value=modules.globals.show_mouth_mask_box)
show_mouth_mask_box_switch = ctk.CTkSwitch(
root,
text="Show Mouth Mask Box",
variable=show_mouth_mask_box_var,
cursor="hand2",
command=lambda: setattr(
modules.globals, "show_mouth_mask_box", show_mouth_mask_box_var.get()
),
)
show_mouth_mask_box_switch.place(relx=0.6, rely=0.55)
start_button = ctk.CTkButton(
root, text="Start", cursor="hand2", command=lambda: analyze_target(start, root)
)
@ -289,18 +321,22 @@ def create_root(start: Callable[[], None], destroy: Callable[[], None]) -> ctk.C
camera_label.place(relx=0.1, rely=0.86, relwidth=0.2, relheight=0.05)
available_cameras = get_available_cameras()
# Convert camera indices to strings for CTkOptionMenu
available_camera_indices, available_camera_strings = available_cameras
camera_variable = ctk.StringVar(
value=(
available_camera_strings[0]
if available_camera_strings
else "No cameras found"
)
)
camera_indices, camera_names = available_cameras
if not camera_names or camera_names[0] == "No cameras found":
camera_variable = ctk.StringVar(value="No cameras found")
camera_optionmenu = ctk.CTkOptionMenu(
root, variable=camera_variable, values=available_camera_strings
root,
variable=camera_variable,
values=["No cameras found"],
state="disabled",
)
else:
camera_variable = ctk.StringVar(value=camera_names[0])
camera_optionmenu = ctk.CTkOptionMenu(
root, variable=camera_variable, values=camera_names
)
camera_optionmenu.place(relx=0.35, rely=0.86, relwidth=0.25, relheight=0.05)
live_button = ctk.CTkButton(
@ -309,9 +345,16 @@ def create_root(start: Callable[[], None], destroy: Callable[[], None]) -> ctk.C
cursor="hand2",
command=lambda: webcam_preview(
root,
available_camera_indices[
available_camera_strings.index(camera_variable.get())
],
(
camera_indices[camera_names.index(camera_variable.get())]
if camera_names and camera_names[0] != "No cameras found"
else None
),
),
state=(
"normal"
if camera_names and camera_names[0] != "No cameras found"
else "disabled"
),
)
live_button.place(relx=0.65, rely=0.86, relwidth=0.2, relheight=0.05)
@ -328,7 +371,7 @@ def create_root(start: Callable[[], None], destroy: Callable[[], None]) -> ctk.C
text_color=ctk.ThemeManager.theme.get("URL").get("text_color")
)
donate_label.bind(
"<Button>", lambda event: webbrowser.open("https://paypal.me/hacksider")
"<Button>", lambda event: webbrowser.open("https://deeplivecam.net")
)
return root
@ -719,7 +762,7 @@ def update_preview(frame_number: int = 0) -> None:
def webcam_preview(root: ctk.CTk, camera_index: int):
if not modules.globals.map_faces:
if modules.globals.source_path is None:
# No image selected
update_status("Please select a source image first")
return
create_webcam_preview(camera_index)
else:
@ -731,40 +774,94 @@ def webcam_preview(root: ctk.CTk, camera_index: int):
def get_available_cameras():
"""Returns a list of available camera names and indices."""
if platform.system() == "Windows":
try:
graph = FilterGraph()
devices = graph.get_input_devices()
# Create list of indices and names
camera_indices = list(range(len(devices)))
camera_names = devices
# If no cameras found through DirectShow, try OpenCV fallback
if not camera_names:
# Try to open camera with index -1 and 0
test_indices = [-1, 0]
working_cameras = []
for idx in test_indices:
cap = cv2.VideoCapture(idx)
if cap.isOpened():
working_cameras.append(f"Camera {idx}")
cap.release()
if working_cameras:
return test_indices[: len(working_cameras)], working_cameras
# If still no cameras found, return empty lists
if not camera_names:
return [], ["No cameras found"]
return camera_indices, camera_names
except Exception as e:
print(f"Error detecting cameras: {str(e)}")
return [], ["No cameras found"]
else:
# Unix-like systems (Linux/Mac) camera detection
camera_indices = []
camera_names = []
for camera in enumerate_cameras():
cap = cv2.VideoCapture(camera.index)
if platform.system() == "Darwin": # macOS specific handling
# Try to open the default FaceTime camera first
cap = cv2.VideoCapture(0)
if cap.isOpened():
camera_indices.append(camera.index)
camera_names.append(camera.name)
camera_indices.append(0)
camera_names.append("FaceTime Camera")
cap.release()
return (camera_indices, camera_names)
# On macOS, additional cameras typically use indices 1 and 2
for i in [1, 2]:
cap = cv2.VideoCapture(i)
if cap.isOpened():
camera_indices.append(i)
camera_names.append(f"Camera {i}")
cap.release()
else:
# Linux camera detection - test first 10 indices
for i in range(10):
cap = cv2.VideoCapture(i)
if cap.isOpened():
camera_indices.append(i)
camera_names.append(f"Camera {i}")
cap.release()
if not camera_names:
return [], ["No cameras found"]
return camera_indices, camera_names
def create_webcam_preview(camera_index: int):
global preview_label, PREVIEW
camera = cv2.VideoCapture(camera_index)
camera.set(cv2.CAP_PROP_FRAME_WIDTH, PREVIEW_DEFAULT_WIDTH)
camera.set(cv2.CAP_PROP_FRAME_HEIGHT, PREVIEW_DEFAULT_HEIGHT)
camera.set(cv2.CAP_PROP_FPS, 60)
cap = VideoCapturer(camera_index)
if not cap.start(PREVIEW_DEFAULT_WIDTH, PREVIEW_DEFAULT_HEIGHT, 60):
update_status("Failed to start camera")
return
preview_label.configure(width=PREVIEW_DEFAULT_WIDTH, height=PREVIEW_DEFAULT_HEIGHT)
PREVIEW.deiconify()
frame_processors = get_frame_processors_modules(modules.globals.frame_processors)
source_image = None
prev_time = time.time()
fps_update_interval = 0.5 # Update FPS every 0.5 seconds
fps_update_interval = 0.5
frame_count = 0
fps = 0
while camera:
ret, frame = camera.read()
while True:
ret, frame = cap.read()
if not ret:
break
@ -778,6 +875,11 @@ def create_webcam_preview(camera_index: int):
temp_frame, PREVIEW.winfo_width(), PREVIEW.winfo_height()
)
else:
temp_frame = fit_image_to_size(
temp_frame, PREVIEW.winfo_width(), PREVIEW.winfo_height()
)
if not modules.globals.map_faces:
if source_image is None and modules.globals.source_path:
source_image = get_one_face(cv2.imread(modules.globals.source_path))
@ -790,7 +892,6 @@ def create_webcam_preview(camera_index: int):
temp_frame = frame_processor.process_frame(source_image, temp_frame)
else:
modules.globals.target_path = None
for frame_processor in frame_processors:
if frame_processor.NAME == "DLC.FACE-ENHANCER":
if modules.globals.fp_ui["face_enhancer"]:
@ -829,7 +930,7 @@ def create_webcam_preview(camera_index: int):
if PREVIEW.state() == "withdrawn":
break
camera.release()
cap.release()
PREVIEW.withdraw()

View File

@ -12,16 +12,23 @@ from tqdm import tqdm
import modules.globals
TEMP_FILE = 'temp.mp4'
TEMP_DIRECTORY = 'temp'
TEMP_FILE = "temp.mp4"
TEMP_DIRECTORY = "temp"
# monkey patch ssl for mac
if platform.system().lower() == 'darwin':
if platform.system().lower() == "darwin":
ssl._create_default_https_context = ssl._create_unverified_context
def run_ffmpeg(args: List[str]) -> bool:
commands = ['ffmpeg', '-hide_banner', '-hwaccel', 'auto', '-loglevel', modules.globals.log_level]
commands = [
"ffmpeg",
"-hide_banner",
"-hwaccel",
"auto",
"-loglevel",
modules.globals.log_level,
]
commands.extend(args)
try:
subprocess.check_output(commands, stderr=subprocess.STDOUT)
@ -32,8 +39,19 @@ def run_ffmpeg(args: List[str]) -> bool:
def detect_fps(target_path: str) -> float:
command = ['ffprobe', '-v', 'error', '-select_streams', 'v:0', '-show_entries', 'stream=r_frame_rate', '-of', 'default=noprint_wrappers=1:nokey=1', target_path]
output = subprocess.check_output(command).decode().strip().split('/')
command = [
"ffprobe",
"-v",
"error",
"-select_streams",
"v:0",
"-show_entries",
"stream=r_frame_rate",
"-of",
"default=noprint_wrappers=1:nokey=1",
target_path,
]
output = subprocess.check_output(command).decode().strip().split("/")
try:
numerator, denominator = map(int, output)
return numerator / denominator
@ -44,25 +62,65 @@ def detect_fps(target_path: str) -> float:
def extract_frames(target_path: str) -> None:
temp_directory_path = get_temp_directory_path(target_path)
run_ffmpeg(['-i', target_path, '-pix_fmt', 'rgb24', os.path.join(temp_directory_path, '%04d.png')])
run_ffmpeg(
[
"-i",
target_path,
"-pix_fmt",
"rgb24",
os.path.join(temp_directory_path, "%04d.png"),
]
)
def create_video(target_path: str, fps: float = 30.0) -> None:
temp_output_path = get_temp_output_path(target_path)
temp_directory_path = get_temp_directory_path(target_path)
run_ffmpeg(['-r', str(fps), '-i', os.path.join(temp_directory_path, '%04d.png'), '-c:v', modules.globals.video_encoder, '-crf', str(modules.globals.video_quality), '-pix_fmt', 'yuv420p', '-vf', 'colorspace=bt709:iall=bt601-6-625:fast=1', '-y', temp_output_path])
run_ffmpeg(
[
"-r",
str(fps),
"-i",
os.path.join(temp_directory_path, "%04d.png"),
"-c:v",
modules.globals.video_encoder,
"-crf",
str(modules.globals.video_quality),
"-pix_fmt",
"yuv420p",
"-vf",
"colorspace=bt709:iall=bt601-6-625:fast=1",
"-y",
temp_output_path,
]
)
def restore_audio(target_path: str, output_path: str) -> None:
temp_output_path = get_temp_output_path(target_path)
done = run_ffmpeg(['-i', temp_output_path, '-i', target_path, '-c:v', 'copy', '-map', '0:v:0', '-map', '1:a:0', '-y', output_path])
done = run_ffmpeg(
[
"-i",
temp_output_path,
"-i",
target_path,
"-c:v",
"copy",
"-map",
"0:v:0",
"-map",
"1:a:0",
"-y",
output_path,
]
)
if not done:
move_temp(target_path, output_path)
def get_temp_frame_paths(target_path: str) -> List[str]:
temp_directory_path = get_temp_directory_path(target_path)
return glob.glob((os.path.join(glob.escape(temp_directory_path), '*.png')))
return glob.glob((os.path.join(glob.escape(temp_directory_path), "*.png")))
def get_temp_directory_path(target_path: str) -> str:
@ -81,7 +139,9 @@ def normalize_output_path(source_path: str, target_path: str, output_path: str)
source_name, _ = os.path.splitext(os.path.basename(source_path))
target_name, target_extension = os.path.splitext(os.path.basename(target_path))
if os.path.isdir(output_path):
return os.path.join(output_path, source_name + '-' + target_name + target_extension)
return os.path.join(
output_path, source_name + "-" + target_name + target_extension
)
return output_path
@ -108,20 +168,20 @@ def clean_temp(target_path: str) -> None:
def has_image_extension(image_path: str) -> bool:
return image_path.lower().endswith(('png', 'jpg', 'jpeg'))
return image_path.lower().endswith(("png", "jpg", "jpeg"))
def is_image(image_path: str) -> bool:
if image_path and os.path.isfile(image_path):
mimetype, _ = mimetypes.guess_type(image_path)
return bool(mimetype and mimetype.startswith('image/'))
return bool(mimetype and mimetype.startswith("image/"))
return False
def is_video(video_path: str) -> bool:
if video_path and os.path.isfile(video_path):
mimetype, _ = mimetypes.guess_type(video_path)
return bool(mimetype and mimetype.startswith('video/'))
return bool(mimetype and mimetype.startswith("video/"))
return False
@ -129,11 +189,19 @@ def conditional_download(download_directory_path: str, urls: List[str]) -> None:
if not os.path.exists(download_directory_path):
os.makedirs(download_directory_path)
for url in urls:
download_file_path = os.path.join(download_directory_path, os.path.basename(url))
download_file_path = os.path.join(
download_directory_path, os.path.basename(url)
)
if not os.path.exists(download_file_path):
request = urllib.request.urlopen(url) # type: ignore[attr-defined]
total = int(request.headers.get('Content-Length', 0))
with tqdm(total=total, desc='Downloading', unit='B', unit_scale=True, unit_divisor=1024) as progress:
total = int(request.headers.get("Content-Length", 0))
with tqdm(
total=total,
desc="Downloading",
unit="B",
unit_scale=True,
unit_divisor=1024,
) as progress:
urllib.request.urlretrieve(url, download_file_path, reporthook=lambda count, block_size, total_size: progress.update(block_size)) # type: ignore[attr-defined]

View File

@ -0,0 +1,94 @@
import cv2
import numpy as np
from typing import Optional, Tuple, Callable
import platform
import threading
# Only import Windows-specific library if on Windows
if platform.system() == "Windows":
from pygrabber.dshow_graph import FilterGraph
class VideoCapturer:
def __init__(self, device_index: int):
self.device_index = device_index
self.frame_callback = None
self._current_frame = None
self._frame_ready = threading.Event()
self.is_running = False
self.cap = None
# Initialize Windows-specific components if on Windows
if platform.system() == "Windows":
self.graph = FilterGraph()
# Verify device exists
devices = self.graph.get_input_devices()
if self.device_index >= len(devices):
raise ValueError(
f"Invalid device index {device_index}. Available devices: {len(devices)}"
)
def start(self, width: int = 960, height: int = 540, fps: int = 60) -> bool:
"""Initialize and start video capture"""
try:
if platform.system() == "Windows":
# Windows-specific capture methods
capture_methods = [
(self.device_index, cv2.CAP_DSHOW), # Try DirectShow first
(self.device_index, cv2.CAP_ANY), # Then try default backend
(-1, cv2.CAP_ANY), # Try -1 as fallback
(0, cv2.CAP_ANY), # Finally try 0 without specific backend
]
for dev_id, backend in capture_methods:
try:
self.cap = cv2.VideoCapture(dev_id, backend)
if self.cap.isOpened():
break
self.cap.release()
except Exception:
continue
else:
# Unix-like systems (Linux/Mac) capture method
self.cap = cv2.VideoCapture(self.device_index)
if not self.cap or not self.cap.isOpened():
raise RuntimeError("Failed to open camera")
# Configure format
self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
self.cap.set(cv2.CAP_PROP_FPS, fps)
self.is_running = True
return True
except Exception as e:
print(f"Failed to start capture: {str(e)}")
if self.cap:
self.cap.release()
return False
def read(self) -> Tuple[bool, Optional[np.ndarray]]:
"""Read a frame from the camera"""
if not self.is_running or self.cap is None:
return False, None
ret, frame = self.cap.read()
if ret:
self._current_frame = frame
if self.frame_callback:
self.frame_callback(frame)
return True, frame
return False, None
def release(self) -> None:
"""Stop capture and release resources"""
if self.is_running and self.cap is not None:
self.cap.release()
self.is_running = False
self.cap = None
def set_frame_callback(self, callback: Callable[[np.ndarray], None]) -> None:
"""Set callback for frame processing"""
self.frame_callback = callback

Binary file not shown.

Before

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 31 KiB

View File

@ -1,7 +1,7 @@
--extra-index-url https://download.pytorch.org/whl/cu118
numpy>=1.23.5,<2
opencv-python==4.8.1.78
opencv-python==4.10.0.84
cv2_enumerate_cameras==1.1.15
onnx==1.16.0
insightface==0.7.3
@ -21,4 +21,4 @@ protobuf==4.23.2
tqdm==4.66.4
gfpgan==1.3.8
tkinterdnd2==0.4.2
customtkinter==5.2.2
pygrabber==0.2

View File

@ -1 +1 @@
python run.py --execution-provider cuda --execution-threads 60 --max-memory 60
python run.py --execution-provider cuda

1
run-directml.bat 100644
View File

@ -0,0 +1 @@
python run.py --execution-provider dml

View File

@ -1 +0,0 @@
python run.py --execution-provider dml

View File

@ -1,13 +0,0 @@
@echo off
:: Installing Microsoft Visual C++ Runtime - all versions 1.0.1 if it's not already installed
choco install vcredist-all
:: Installing CUDA if it's not already installed
choco install cuda
:: Inatalling ffmpeg if it's not already installed
choco install ffmpeg
:: Installing Python if it's not already installed
choco install python -y
:: Assuming successful installation, we ensure pip is upgraded
python -m ensurepip --upgrade
:: Use pip to install the packages listed in 'requirements.txt'
pip install -r requirements.txt

View File

@ -1,122 +0,0 @@
@echo off
setlocal EnableDelayedExpansion
:: 1. Setup your platform
echo Setting up your platform...
:: Python
where python >nul 2>&1
if %ERRORLEVEL% neq 0 (
echo Python is not installed. Please install Python 3.10 or later.
pause
exit /b
)
:: Pip
where pip >nul 2>&1
if %ERRORLEVEL% neq 0 (
echo Pip is not installed. Please install Pip.
pause
exit /b
)
:: Git
where git >nul 2>&1
if %ERRORLEVEL% neq 0 (
echo Git is not installed. Installing Git...
winget install --id Git.Git -e --source winget
)
:: FFMPEG
where ffmpeg >nul 2>&1
if %ERRORLEVEL% neq 0 (
echo FFMPEG is not installed. Installing FFMPEG...
winget install --id Gyan.FFmpeg -e --source winget
)
:: Visual Studio 2022 Runtimes
echo Installing Visual Studio 2022 Runtimes...
winget install --id Microsoft.VC++2015-2022Redist-x64 -e --source winget
:: 2. Clone Repository
if exist Deep-Live-Cam (
echo Deep-Live-Cam directory already exists.
set /p overwrite="Do you want to overwrite? (Y/N): "
if /i "%overwrite%"=="Y" (
rmdir /s /q Deep-Live-Cam
git clone https://github.com/hacksider/Deep-Live-Cam.git
) else (
echo Skipping clone, using existing directory.
)
) else (
git clone https://github.com/hacksider/Deep-Live-Cam.git
)
cd Deep-Live-Cam
:: 3. Download Models
echo Downloading models...
mkdir models
curl -L -o models/GFPGANv1.4.pth https://path.to.model/GFPGANv1.4.pth
curl -L -o models/inswapper_128_fp16.onnx https://path.to.model/inswapper_128_fp16.onnx
:: 4. Install dependencies
echo Creating a virtual environment...
python -m venv venv
call venv\Scripts\activate
echo Installing required Python packages...
pip install --upgrade pip
pip install -r requirements.txt
echo Setup complete. You can now run the application.
:: GPU Acceleration Options
echo.
echo Choose the GPU Acceleration Option if applicable:
echo 1. CUDA (Nvidia)
echo 2. CoreML (Apple Silicon)
echo 3. CoreML (Apple Legacy)
echo 4. DirectML (Windows)
echo 5. OpenVINO (Intel)
echo 6. None
set /p choice="Enter your choice (1-6): "
if "%choice%"=="1" (
echo Installing CUDA dependencies...
pip uninstall -y onnxruntime onnxruntime-gpu
pip install onnxruntime-gpu==1.16.3
set exec_provider="cuda"
) else if "%choice%"=="2" (
echo Installing CoreML (Apple Silicon) dependencies...
pip uninstall -y onnxruntime onnxruntime-silicon
pip install onnxruntime-silicon==1.13.1
set exec_provider="coreml"
) else if "%choice%"=="3" (
echo Installing CoreML (Apple Legacy) dependencies...
pip uninstall -y onnxruntime onnxruntime-coreml
pip install onnxruntime-coreml==1.13.1
set exec_provider="coreml"
) else if "%choice%"=="4" (
echo Installing DirectML dependencies...
pip uninstall -y onnxruntime onnxruntime-directml
pip install onnxruntime-directml==1.15.1
set exec_provider="directml"
) else if "%choice%"=="5" (
echo Installing OpenVINO dependencies...
pip uninstall -y onnxruntime onnxruntime-openvino
pip install onnxruntime-openvino==1.15.0
set exec_provider="openvino"
) else (
echo Skipping GPU acceleration setup.
)
:: Run the application
if defined exec_provider (
echo Running the application with %exec_provider% execution provider...
python run.py --execution-provider %exec_provider%
) else (
echo Running the application...
python run.py
)
pause