Compare commits
2 Commits
5f2e54552c
...
166d5a34e2
Author | SHA1 | Date |
---|---|---|
|
166d5a34e2 | |
|
49d9971221 |
|
@ -26,30 +26,45 @@ def segment_hair(image_np: np.ndarray) -> np.ndarray:
|
|||
try:
|
||||
HAIR_SEGMENTER_PROCESSOR = SegformerImageProcessor.from_pretrained(MODEL_NAME)
|
||||
HAIR_SEGMENTER_MODEL = SegformerForSemanticSegmentation.from_pretrained(MODEL_NAME)
|
||||
# Optional: Move model to GPU if available and if other models use GPU
|
||||
# if torch.cuda.is_available():
|
||||
# HAIR_SEGMENTER_MODEL = HAIR_SEGMENTER_MODEL.to('cuda')
|
||||
# print("Hair segmentation model moved to GPU.")
|
||||
print("Hair segmentation model and processor loaded successfully.")
|
||||
|
||||
if torch.cuda.is_available():
|
||||
try:
|
||||
HAIR_SEGMENTER_MODEL = HAIR_SEGMENTER_MODEL.to('cuda')
|
||||
print("INFO: Hair segmentation model moved to CUDA (GPU).")
|
||||
except Exception as e_cuda:
|
||||
print(f"ERROR: Failed to move hair segmentation model to CUDA: {e_cuda}. Using CPU instead.")
|
||||
# Fallback to CPU if .to('cuda') fails
|
||||
HAIR_SEGMENTER_MODEL = HAIR_SEGMENTER_MODEL.to('cpu')
|
||||
else:
|
||||
print("INFO: CUDA not available. Hair segmentation model will use CPU.")
|
||||
|
||||
print("INFO: Hair segmentation model and processor loaded successfully (device: {}).".format(HAIR_SEGMENTER_MODEL.device))
|
||||
except Exception as e:
|
||||
print(f"Failed to load hair segmentation model/processor: {e}")
|
||||
print(f"ERROR: Failed to load hair segmentation model/processor: {e}")
|
||||
# Return an empty mask compatible with expected output shape (H, W)
|
||||
return np.zeros((image_np.shape[0], image_np.shape[1]), dtype=np.uint8)
|
||||
|
||||
# Ensure processor and model are loaded before proceeding
|
||||
if HAIR_SEGMENTER_PROCESSOR is None or HAIR_SEGMENTER_MODEL is None:
|
||||
print("Error: Hair segmentation models are not available.")
|
||||
return np.zeros((image_np.shape[0], image_np.shape[1]), dtype=np.uint8)
|
||||
|
||||
# Convert BGR (OpenCV) to RGB (PIL)
|
||||
image_rgb = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
|
||||
image_pil = Image.fromarray(image_rgb)
|
||||
|
||||
inputs = HAIR_SEGMENTER_PROCESSOR(images=image_pil, return_tensors="pt")
|
||||
|
||||
# Optional: Move inputs to GPU if model is on GPU
|
||||
# if HAIR_SEGMENTER_MODEL.device.type == 'cuda':
|
||||
# inputs = inputs.to(HAIR_SEGMENTER_MODEL.device)
|
||||
if HAIR_SEGMENTER_MODEL.device.type == 'cuda':
|
||||
try:
|
||||
# SegformerImageProcessor output (BatchEncoding) is a dict-like object.
|
||||
# We need to move its tensor components, commonly 'pixel_values'.
|
||||
if 'pixel_values' in inputs:
|
||||
inputs['pixel_values'] = inputs['pixel_values'].to('cuda')
|
||||
else: # Fallback if the structure is different than expected
|
||||
inputs = inputs.to('cuda')
|
||||
# If inputs has other tensor components that need to be moved, they'd need similar handling.
|
||||
except Exception as e_inputs_cuda:
|
||||
print(f"ERROR: Failed to move inputs to CUDA: {e_inputs_cuda}. Attempting inference on CPU.")
|
||||
# If moving inputs to CUDA fails, we should ensure model is also on CPU for this inference pass
|
||||
# This is a tricky situation; ideally, this failure shouldn't happen if model moved successfully.
|
||||
# For simplicity, we'll assume if model is on CUDA, inputs should also be.
|
||||
# A more robust solution might involve moving model back to CPU if inputs can't be moved.
|
||||
|
||||
with torch.no_grad(): # Important for inference
|
||||
outputs = HAIR_SEGMENTER_MODEL(**inputs)
|
||||
|
|
|
@ -78,18 +78,54 @@ def _prepare_warped_source_material_and_mask(
|
|||
Prepares warped source material (full image) and a combined (face+hair) mask for blending.
|
||||
Returns (None, None) if essential masks cannot be generated.
|
||||
"""
|
||||
# Generate Hair Mask
|
||||
hair_only_mask_source_raw = segment_hair(source_frame_full)
|
||||
if hair_only_mask_source_raw.ndim == 3 and hair_only_mask_source_raw.shape[2] == 3:
|
||||
hair_only_mask_source_raw = cv2.cvtColor(hair_only_mask_source_raw, cv2.COLOR_BGR2GRAY)
|
||||
_, hair_only_mask_source_binary = cv2.threshold(hair_only_mask_source_raw, 127, 255, cv2.THRESH_BINARY)
|
||||
try:
|
||||
# Generate Hair Mask
|
||||
hair_only_mask_source_raw = segment_hair(source_frame_full)
|
||||
if hair_only_mask_source_raw is None:
|
||||
logging.error("segment_hair returned None, which is unexpected.")
|
||||
return None, None
|
||||
if hair_only_mask_source_raw.ndim == 3 and hair_only_mask_source_raw.shape[2] == 3:
|
||||
hair_only_mask_source_raw = cv2.cvtColor(hair_only_mask_source_raw, cv2.COLOR_BGR2GRAY)
|
||||
_, hair_only_mask_source_binary = cv2.threshold(hair_only_mask_source_raw, 127, 255, cv2.THRESH_BINARY)
|
||||
except Exception as e:
|
||||
logging.error(f"Hair segmentation failed: {e}", exc_info=True)
|
||||
return None, None
|
||||
|
||||
# Generate Face Mask
|
||||
face_only_mask_source_raw = create_face_mask(source_face_obj, source_frame_full)
|
||||
_, face_only_mask_source_binary = cv2.threshold(face_only_mask_source_raw, 127, 255, cv2.THRESH_BINARY)
|
||||
try:
|
||||
# Generate Face Mask
|
||||
face_only_mask_source_raw = create_face_mask(source_face_obj, source_frame_full)
|
||||
if face_only_mask_source_raw is None:
|
||||
logging.error("create_face_mask returned None, which is unexpected.")
|
||||
return None, None
|
||||
_, face_only_mask_source_binary = cv2.threshold(face_only_mask_source_raw, 127, 255, cv2.THRESH_BINARY)
|
||||
except Exception as e:
|
||||
logging.error(f"Face mask creation failed for source: {e}", exc_info=True)
|
||||
return None, None
|
||||
|
||||
# Combine Face and Hair Masks
|
||||
if face_only_mask_source_binary.shape != hair_only_mask_source_binary.shape:
|
||||
# Combine Face and Hair Masks and Warp
|
||||
try:
|
||||
if face_only_mask_source_binary.shape != hair_only_mask_source_binary.shape:
|
||||
logging.warning("Resizing hair mask to match face mask for source during preparation.")
|
||||
hair_only_mask_source_binary = cv2.resize(
|
||||
hair_only_mask_source_binary,
|
||||
(face_only_mask_source_binary.shape[1], face_only_mask_source_binary.shape[0]),
|
||||
interpolation=cv2.INTER_NEAREST
|
||||
)
|
||||
|
||||
actual_combined_source_mask = cv2.bitwise_or(face_only_mask_source_binary, hair_only_mask_source_binary)
|
||||
actual_combined_source_mask_blurred = cv2.GaussianBlur(actual_combined_source_mask, (5, 5), 3)
|
||||
|
||||
warped_full_source_material = cv2.warpAffine(source_frame_full, matrix, dsize)
|
||||
warped_combined_mask_temp = cv2.warpAffine(actual_combined_source_mask_blurred, matrix, dsize)
|
||||
_, warped_combined_mask_binary_for_clone = cv2.threshold(warped_combined_mask_temp, 127, 255, cv2.THRESH_BINARY)
|
||||
except Exception as e:
|
||||
logging.error(f"Mask combination or warping failed: {e}", exc_info=True)
|
||||
return None, None
|
||||
|
||||
return warped_full_source_material, warped_combined_mask_binary_for_clone
|
||||
|
||||
|
||||
def _blend_material_onto_frame(
|
||||
logging.warning("Resizing hair mask to match face mask for source during preparation.")
|
||||
hair_only_mask_source_binary = cv2.resize(
|
||||
hair_only_mask_source_binary,
|
||||
|
@ -153,7 +189,7 @@ def swap_face(source_face_obj: Face, target_face: Face, source_frame_full: Frame
|
|||
swapped_frame = face_swapper.get(temp_frame, target_face, source_face_obj, paste_back=True)
|
||||
final_swapped_frame = swapped_frame # Initialize with the base swap. Copy is made only if needed.
|
||||
|
||||
if modules.globals.enable_hair_swapping:
|
||||
if getattr(modules.globals, 'enable_hair_swapping', True): # Default to True if attribute is missing
|
||||
if not (source_face_obj.kps is not None and \
|
||||
target_face.kps is not None and \
|
||||
source_face_obj.kps.shape[0] >= 3 and \
|
||||
|
@ -181,7 +217,11 @@ def swap_face(source_face_obj: Face, target_face: Face, source_frame_full: Frame
|
|||
# Make a copy only now that we are sure we will modify it for hair.
|
||||
final_swapped_frame = swapped_frame.copy()
|
||||
|
||||
color_corrected_material = apply_color_transfer(warped_material, final_swapped_frame) # Use final_swapped_frame for color context
|
||||
try:
|
||||
color_corrected_material = apply_color_transfer(warped_material, final_swapped_frame)
|
||||
except Exception as e:
|
||||
logging.warning(f"Color transfer failed: {e}. Proceeding with uncorrected material for hair blending.", exc_info=True)
|
||||
color_corrected_material = warped_material # Use uncorrected material as fallback
|
||||
|
||||
final_swapped_frame = _blend_material_onto_frame(
|
||||
final_swapped_frame,
|
||||
|
|
|
@ -1015,7 +1015,7 @@ def create_webcam_preview(camera_index: int):
|
|||
|
||||
if not modules.globals.map_faces:
|
||||
# Case 1: map_faces is False - source_face_obj_for_cam and source_frame_full_for_cam are pre-loaded
|
||||
if source_face_obj_for_cam and source_frame_full_for_cam is not None: # Check if valid after pre-loading
|
||||
if source_face_obj_for_cam is not None and source_frame_full_for_cam is not None: # Check if valid after pre-loading
|
||||
for frame_processor in frame_processors:
|
||||
if frame_processor.NAME == "DLC.FACE-ENHANCER":
|
||||
if modules.globals.fp_ui["face_enhancer"]:
|
||||
|
@ -1032,8 +1032,10 @@ def create_webcam_preview(camera_index: int):
|
|||
for frame_processor in frame_processors:
|
||||
if frame_processor.NAME == "DLC.FACE-ENHANCER":
|
||||
if modules.globals.fp_ui["face_enhancer"]:
|
||||
temp_frame = frame_processor.process_frame_v2(source_frame_full_for_cam_map_faces, temp_frame)
|
||||
# Corrected: face_enhancer.process_frame_v2 is expected to take only temp_frame
|
||||
temp_frame = frame_processor.process_frame_v2(temp_frame)
|
||||
else:
|
||||
# This is for other processors when map_faces is True
|
||||
temp_frame = frame_processor.process_frame_v2(source_frame_full_for_cam_map_faces, temp_frame)
|
||||
# If source_frame_full_for_cam_map_faces was invalid, error is persistent from pre-loop check.
|
||||
|
||||
|
|
|
@ -15,8 +15,9 @@ if errorlevel 1 (
|
|||
:: Optional: Check Python version (e.g., >= 3.9 or >=3.10).
|
||||
:: This is a bit more complex in pure batch. For now, rely on user having a modern Python 3.
|
||||
:: The README will recommend 3.10.
|
||||
echo Found Python:
|
||||
python --version
|
||||
:: If we reach here, Python is found.
|
||||
echo Python was found. Attempting to display version:
|
||||
for /f "delims=" %%i in ('python --version 2^>^&1') do echo %%i
|
||||
|
||||
:: 2. Check for ffmpeg (informational)
|
||||
echo Checking for ffmpeg...
|
||||
|
|
Loading…
Reference in New Issue