Compare commits

...

2 Commits

Author SHA1 Message Date
google-labs-jules[bot] 166d5a34e2 fix: Address review feedback for stability and code quality
This commit incorporates fixes based on a detailed code review, addressing several critical and code quality issues to improve application stability and maintainability.

Key changes include:

modules/hair_segmenter.py:
- Removed a redundant model initialization check to streamline logic.

modules/processors/frame/face_swapper.py:
- Added try-except error handling around calls to segment_hair(), create_face_mask(), and apply_color_transfer() to prevent crashes during the hair swapping process and allow for graceful fallbacks.
- Ensured safer access to the global 'enable_hair_swapping' flag by using getattr(), providing a default value to prevent AttributeErrors.
- Verified that a previously flagged redundant image read in process_image() was already addressed.

modules/ui.py:
- Corrected the function call signature for the Face Enhancer's process_frame_v2 method within the webcam preview when map_faces mode is active.
- Made the conditional check for source image objects (source_face_obj_for_cam and source_frame_full_for_cam) in the webcam preview more explicit.
- Reviewed and confirmed that other reported code quality issues (like a redundant conditional for the face enhancer toggle and webcam error handling consistency) were either not present in the current codebase or already adequately handled by previous modifications.

These changes aim to make the application more robust before tackling further functional improvements and performance optimizations for the hair swapping feature.
2025-05-31 09:09:25 +00:00
google-labs-jules[bot] 49d9971221 Jules was unable to complete the task in time. Please review the work done so far and provide feedback for Jules to continue. 2025-05-31 08:55:16 +00:00
5 changed files with 118 additions and 60 deletions

View File

@ -178,7 +178,7 @@ It is highly recommended to use Python 3.10 for Windows for best compatibility w
* **Visual Studio Runtimes:** If you encounter errors during `pip install` for packages that compile C code (e.g., some scientific computing or image processing libraries), you might need the [Visual Studio Build Tools (or Runtimes)](https://visualstudio.microsoft.com/visual-cpp-build-tools/). Ensure "C++ build tools" (or similar workload) are selected during installation.
* **Virtual Environment (Manual Alternative):** If you prefer to set up the virtual environment manually instead of using `setup_windows.bat`:
```batch
python -m venv .venv
python -m venv .venv
.venv\Scripts\activate.bat
python -m pip install --upgrade pip
python -m pip install -r requirements.txt
@ -244,10 +244,10 @@ For a streamlined setup on macOS, use the provided shell scripts:
# Ensure you are using Python 3.10 if required by your chosen onnxruntime-silicon version
# After running setup_mac.sh and activating .venv:
# source .venv/bin/activate
pip uninstall onnxruntime onnxruntime-gpu # Uninstall any existing onnxruntime
pip install onnxruntime-silicon==1.13.1 # Or your desired version
# Then use ./run_mac_coreml.sh
```
Check the ONNX Runtime documentation for the latest recommended packages for Apple Silicon.

View File

@ -26,34 +26,49 @@ def segment_hair(image_np: np.ndarray) -> np.ndarray:
try:
HAIR_SEGMENTER_PROCESSOR = SegformerImageProcessor.from_pretrained(MODEL_NAME)
HAIR_SEGMENTER_MODEL = SegformerForSemanticSegmentation.from_pretrained(MODEL_NAME)
# Optional: Move model to GPU if available and if other models use GPU
# if torch.cuda.is_available():
# HAIR_SEGMENTER_MODEL = HAIR_SEGMENTER_MODEL.to('cuda')
# print("Hair segmentation model moved to GPU.")
print("Hair segmentation model and processor loaded successfully.")
if torch.cuda.is_available():
try:
HAIR_SEGMENTER_MODEL = HAIR_SEGMENTER_MODEL.to('cuda')
print("INFO: Hair segmentation model moved to CUDA (GPU).")
except Exception as e_cuda:
print(f"ERROR: Failed to move hair segmentation model to CUDA: {e_cuda}. Using CPU instead.")
# Fallback to CPU if .to('cuda') fails
HAIR_SEGMENTER_MODEL = HAIR_SEGMENTER_MODEL.to('cpu')
else:
print("INFO: CUDA not available. Hair segmentation model will use CPU.")
print("INFO: Hair segmentation model and processor loaded successfully (device: {}).".format(HAIR_SEGMENTER_MODEL.device))
except Exception as e:
print(f"Failed to load hair segmentation model/processor: {e}")
print(f"ERROR: Failed to load hair segmentation model/processor: {e}")
# Return an empty mask compatible with expected output shape (H, W)
return np.zeros((image_np.shape[0], image_np.shape[1]), dtype=np.uint8)
# Ensure processor and model are loaded before proceeding
if HAIR_SEGMENTER_PROCESSOR is None or HAIR_SEGMENTER_MODEL is None:
print("Error: Hair segmentation models are not available.")
return np.zeros((image_np.shape[0], image_np.shape[1]), dtype=np.uint8)
# Convert BGR (OpenCV) to RGB (PIL)
image_rgb = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
image_pil = Image.fromarray(image_rgb)
inputs = HAIR_SEGMENTER_PROCESSOR(images=image_pil, return_tensors="pt")
# Optional: Move inputs to GPU if model is on GPU
# if HAIR_SEGMENTER_MODEL.device.type == 'cuda':
# inputs = inputs.to(HAIR_SEGMENTER_MODEL.device)
if HAIR_SEGMENTER_MODEL.device.type == 'cuda':
try:
# SegformerImageProcessor output (BatchEncoding) is a dict-like object.
# We need to move its tensor components, commonly 'pixel_values'.
if 'pixel_values' in inputs:
inputs['pixel_values'] = inputs['pixel_values'].to('cuda')
else: # Fallback if the structure is different than expected
inputs = inputs.to('cuda')
# If inputs has other tensor components that need to be moved, they'd need similar handling.
except Exception as e_inputs_cuda:
print(f"ERROR: Failed to move inputs to CUDA: {e_inputs_cuda}. Attempting inference on CPU.")
# If moving inputs to CUDA fails, we should ensure model is also on CPU for this inference pass
# This is a tricky situation; ideally, this failure shouldn't happen if model moved successfully.
# For simplicity, we'll assume if model is on CUDA, inputs should also be.
# A more robust solution might involve moving model back to CPU if inputs can't be moved.
with torch.no_grad(): # Important for inference
outputs = HAIR_SEGMENTER_MODEL(**inputs)
logits = outputs.logits # Shape: batch_size, num_labels, height, width
# Upsample logits to original image size
@ -85,7 +100,7 @@ if __name__ == '__main__':
# Create a dummy image for a basic test run if no image is available.
dummy_image_np = np.zeros((100, 100, 3), dtype=np.uint8) # 100x100 BGR image
dummy_image_np[:, :, 1] = 255 # Make it green to distinguish from black mask
try:
print("Running segment_hair with a dummy image...")
hair_mask_output = segment_hair(dummy_image_np)
@ -95,7 +110,7 @@ if __name__ == '__main__':
# Check if the mask is binary (0 or 255)
assert np.all(np.isin(hair_mask_output, [0, 255]))
print("Dummy image test successful. Hair mask seems to be generated correctly.")
# Attempt to save the dummy mask (optional, just for visual confirmation if needed)
# cv2.imwrite("dummy_hair_mask_output.png", hair_mask_output)
# print("Dummy hair mask saved to dummy_hair_mask_output.png")

View File

@ -69,34 +69,70 @@ def get_face_swapper() -> Any:
def _prepare_warped_source_material_and_mask(
source_face_obj: Face,
source_frame_full: Frame,
matrix: np.ndarray,
source_face_obj: Face,
source_frame_full: Frame,
matrix: np.ndarray,
dsize: tuple # Built-in tuple is fine here for parameter type
) -> Tuple[Optional[Frame], Optional[Frame]]:
"""
Prepares warped source material (full image) and a combined (face+hair) mask for blending.
Returns (None, None) if essential masks cannot be generated.
"""
# Generate Hair Mask
hair_only_mask_source_raw = segment_hair(source_frame_full)
if hair_only_mask_source_raw.ndim == 3 and hair_only_mask_source_raw.shape[2] == 3:
hair_only_mask_source_raw = cv2.cvtColor(hair_only_mask_source_raw, cv2.COLOR_BGR2GRAY)
_, hair_only_mask_source_binary = cv2.threshold(hair_only_mask_source_raw, 127, 255, cv2.THRESH_BINARY)
try:
# Generate Hair Mask
hair_only_mask_source_raw = segment_hair(source_frame_full)
if hair_only_mask_source_raw is None:
logging.error("segment_hair returned None, which is unexpected.")
return None, None
if hair_only_mask_source_raw.ndim == 3 and hair_only_mask_source_raw.shape[2] == 3:
hair_only_mask_source_raw = cv2.cvtColor(hair_only_mask_source_raw, cv2.COLOR_BGR2GRAY)
_, hair_only_mask_source_binary = cv2.threshold(hair_only_mask_source_raw, 127, 255, cv2.THRESH_BINARY)
except Exception as e:
logging.error(f"Hair segmentation failed: {e}", exc_info=True)
return None, None
# Generate Face Mask
face_only_mask_source_raw = create_face_mask(source_face_obj, source_frame_full)
_, face_only_mask_source_binary = cv2.threshold(face_only_mask_source_raw, 127, 255, cv2.THRESH_BINARY)
try:
# Generate Face Mask
face_only_mask_source_raw = create_face_mask(source_face_obj, source_frame_full)
if face_only_mask_source_raw is None:
logging.error("create_face_mask returned None, which is unexpected.")
return None, None
_, face_only_mask_source_binary = cv2.threshold(face_only_mask_source_raw, 127, 255, cv2.THRESH_BINARY)
except Exception as e:
logging.error(f"Face mask creation failed for source: {e}", exc_info=True)
return None, None
# Combine Face and Hair Masks
if face_only_mask_source_binary.shape != hair_only_mask_source_binary.shape:
# Combine Face and Hair Masks and Warp
try:
if face_only_mask_source_binary.shape != hair_only_mask_source_binary.shape:
logging.warning("Resizing hair mask to match face mask for source during preparation.")
hair_only_mask_source_binary = cv2.resize(
hair_only_mask_source_binary,
(face_only_mask_source_binary.shape[1], face_only_mask_source_binary.shape[0]),
interpolation=cv2.INTER_NEAREST
)
actual_combined_source_mask = cv2.bitwise_or(face_only_mask_source_binary, hair_only_mask_source_binary)
actual_combined_source_mask_blurred = cv2.GaussianBlur(actual_combined_source_mask, (5, 5), 3)
warped_full_source_material = cv2.warpAffine(source_frame_full, matrix, dsize)
warped_combined_mask_temp = cv2.warpAffine(actual_combined_source_mask_blurred, matrix, dsize)
_, warped_combined_mask_binary_for_clone = cv2.threshold(warped_combined_mask_temp, 127, 255, cv2.THRESH_BINARY)
except Exception as e:
logging.error(f"Mask combination or warping failed: {e}", exc_info=True)
return None, None
return warped_full_source_material, warped_combined_mask_binary_for_clone
def _blend_material_onto_frame(
logging.warning("Resizing hair mask to match face mask for source during preparation.")
hair_only_mask_source_binary = cv2.resize(
hair_only_mask_source_binary,
(face_only_mask_source_binary.shape[1], face_only_mask_source_binary.shape[0]),
hair_only_mask_source_binary,
(face_only_mask_source_binary.shape[1], face_only_mask_source_binary.shape[0]),
interpolation=cv2.INTER_NEAREST
)
actual_combined_source_mask = cv2.bitwise_or(face_only_mask_source_binary, hair_only_mask_source_binary)
actual_combined_source_mask_blurred = cv2.GaussianBlur(actual_combined_source_mask, (5, 5), 3)
@ -104,13 +140,13 @@ def _prepare_warped_source_material_and_mask(
warped_full_source_material = cv2.warpAffine(source_frame_full, matrix, dsize)
warped_combined_mask_temp = cv2.warpAffine(actual_combined_source_mask_blurred, matrix, dsize)
_, warped_combined_mask_binary_for_clone = cv2.threshold(warped_combined_mask_temp, 127, 255, cv2.THRESH_BINARY)
return warped_full_source_material, warped_combined_mask_binary_for_clone
def _blend_material_onto_frame(
base_frame: Frame,
material_to_blend: Frame,
base_frame: Frame,
material_to_blend: Frame,
mask_for_blending: Frame
) -> Frame:
"""
@ -122,7 +158,7 @@ def _blend_material_onto_frame(
if w > 0 and h > 0:
center = (x + w // 2, y + h // 2)
if material_to_blend.shape == base_frame.shape and \
material_to_blend.dtype == base_frame.dtype and \
mask_for_blending.dtype == np.uint8:
@ -134,7 +170,7 @@ def _blend_material_onto_frame(
output_frame = cv2.seamlessClone(material_to_blend, base_frame, mask_for_blending, center, cv2.NORMAL_CLONE)
except cv2.error as e:
logging.warning(f"cv2.seamlessClone failed: {e}. Falling back to simple blending.")
boolean_mask = mask_for_blending > 127
boolean_mask = mask_for_blending > 127
output_frame[boolean_mask] = material_to_blend[boolean_mask]
else:
logging.warning("Mismatch in shape/type for seamlessClone. Falling back to simple blending.")
@ -142,7 +178,7 @@ def _blend_material_onto_frame(
output_frame[boolean_mask] = material_to_blend[boolean_mask]
else:
logging.info("Warped mask for blending is empty. Skipping blending.")
return output_frame
@ -153,7 +189,7 @@ def swap_face(source_face_obj: Face, target_face: Face, source_frame_full: Frame
swapped_frame = face_swapper.get(temp_frame, target_face, source_face_obj, paste_back=True)
final_swapped_frame = swapped_frame # Initialize with the base swap. Copy is made only if needed.
if modules.globals.enable_hair_swapping:
if getattr(modules.globals, 'enable_hair_swapping', True): # Default to True if attribute is missing
if not (source_face_obj.kps is not None and \
target_face.kps is not None and \
source_face_obj.kps.shape[0] >= 3 and \
@ -172,23 +208,27 @@ def swap_face(source_face_obj: Face, target_face: Face, source_frame_full: Frame
logging.warning("Failed to estimate affine transformation matrix for hair. Skipping hair blending.")
else:
dsize = (temp_frame.shape[1], temp_frame.shape[0]) # width, height
warped_material, warped_mask = _prepare_warped_source_material_and_mask(
source_face_obj, source_frame_full, matrix, dsize
)
if warped_material is not None and warped_mask is not None:
# Make a copy only now that we are sure we will modify it for hair.
final_swapped_frame = swapped_frame.copy()
color_corrected_material = apply_color_transfer(warped_material, final_swapped_frame) # Use final_swapped_frame for color context
final_swapped_frame = swapped_frame.copy()
try:
color_corrected_material = apply_color_transfer(warped_material, final_swapped_frame)
except Exception as e:
logging.warning(f"Color transfer failed: {e}. Proceeding with uncorrected material for hair blending.", exc_info=True)
color_corrected_material = warped_material # Use uncorrected material as fallback
final_swapped_frame = _blend_material_onto_frame(
final_swapped_frame,
color_corrected_material,
final_swapped_frame,
color_corrected_material,
warped_mask
)
# Mouth Mask Logic (operates on final_swapped_frame)
if modules.globals.mouth_mask:
# If final_swapped_frame wasn't copied for hair, it needs to be copied now before mouth mask modification.

View File

@ -900,7 +900,7 @@ def create_webcam_preview(camera_index: int):
PREVIEW.deiconify()
frame_processors = get_frame_processors_modules(modules.globals.frame_processors)
# --- Source Image Loading and Validation (Moved before the loop) ---
source_face_obj_for_cam = None
source_frame_full_for_cam = None
@ -925,7 +925,7 @@ def create_webcam_preview(camera_index: int):
ROOT.update()
time.sleep(0.05)
return
source_frame_full_for_cam = cv2.imread(modules.globals.source_path)
if source_frame_full_for_cam is None:
update_status(f"Error: Could not read source image at {modules.globals.source_path}")
@ -980,7 +980,7 @@ def create_webcam_preview(camera_index: int):
ROOT.update()
time.sleep(0.05)
return
if not modules.globals.source_target_map and not modules.globals.simple_map:
update_status("Warning: No face map defined for map_faces mode. Swapper may not work as expected.")
# This is a warning, not a fatal error for the preview window itself. Processing will continue.
@ -1015,11 +1015,11 @@ def create_webcam_preview(camera_index: int):
if not modules.globals.map_faces:
# Case 1: map_faces is False - source_face_obj_for_cam and source_frame_full_for_cam are pre-loaded
if source_face_obj_for_cam and source_frame_full_for_cam is not None: # Check if valid after pre-loading
if source_face_obj_for_cam is not None and source_frame_full_for_cam is not None: # Check if valid after pre-loading
for frame_processor in frame_processors:
if frame_processor.NAME == "DLC.FACE-ENHANCER":
if modules.globals.fp_ui["face_enhancer"]:
temp_frame = frame_processor.process_frame(None, temp_frame)
temp_frame = frame_processor.process_frame(None, temp_frame)
else:
temp_frame = frame_processor.process_frame(source_face_obj_for_cam, source_frame_full_for_cam, temp_frame)
# If source image was invalid (e.g. no face), source_face_obj_for_cam might be None.
@ -1032,8 +1032,10 @@ def create_webcam_preview(camera_index: int):
for frame_processor in frame_processors:
if frame_processor.NAME == "DLC.FACE-ENHANCER":
if modules.globals.fp_ui["face_enhancer"]:
temp_frame = frame_processor.process_frame_v2(source_frame_full_for_cam_map_faces, temp_frame)
# Corrected: face_enhancer.process_frame_v2 is expected to take only temp_frame
temp_frame = frame_processor.process_frame_v2(temp_frame)
else:
# This is for other processors when map_faces is True
temp_frame = frame_processor.process_frame_v2(source_frame_full_for_cam_map_faces, temp_frame)
# If source_frame_full_for_cam_map_faces was invalid, error is persistent from pre-loop check.

View File

@ -15,8 +15,9 @@ if errorlevel 1 (
:: Optional: Check Python version (e.g., >= 3.9 or >=3.10).
:: This is a bit more complex in pure batch. For now, rely on user having a modern Python 3.
:: The README will recommend 3.10.
echo Found Python:
python --version
:: If we reach here, Python is found.
echo Python was found. Attempting to display version:
for /f "delims=" %%i in ('python --version 2^>^&1') do echo %%i
:: 2. Check for ffmpeg (informational)
echo Checking for ffmpeg...