Merge 2d0c5bc8d0
into 2b70131e6a
commit
82fcd7916a
|
@ -41,3 +41,5 @@ show_mouth_mask_box = False
|
|||
mask_feather_ratio = 8
|
||||
mask_down_size = 0.50
|
||||
mask_size = 1
|
||||
|
||||
# Removed all performance optimization variables
|
||||
|
|
|
@ -70,7 +70,7 @@ def get_face_swapper() -> Any:
|
|||
def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
|
||||
face_swapper = get_face_swapper()
|
||||
|
||||
# Apply the face swap
|
||||
# Simple face swap - maximum FPS
|
||||
swapped_frame = face_swapper.get(
|
||||
temp_frame, target_face, source_face, paste_back=True
|
||||
)
|
||||
|
@ -98,28 +98,211 @@ def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
|
|||
return swapped_frame
|
||||
|
||||
|
||||
# Simple face position smoothing for stability
|
||||
_last_face_position = None
|
||||
_position_smoothing = 0.7 # Higher = more stable, lower = more responsive
|
||||
|
||||
def swap_face_stable(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
|
||||
"""Ultra-fast face swap - maximum FPS priority"""
|
||||
# Skip all complex processing for maximum FPS
|
||||
face_swapper = get_face_swapper()
|
||||
swapped_frame = face_swapper.get(temp_frame, target_face, source_face, paste_back=True)
|
||||
|
||||
# Skip all post-processing to maximize FPS
|
||||
return swapped_frame
|
||||
|
||||
|
||||
def swap_face_ultra_fast(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
|
||||
"""Fast face swap with mouth mask support and forehead protection"""
|
||||
face_swapper = get_face_swapper()
|
||||
swapped_frame = face_swapper.get(temp_frame, target_face, source_face, paste_back=True)
|
||||
|
||||
# Fix forehead hair issue - blend forehead area back to original
|
||||
swapped_frame = fix_forehead_hair_issue(swapped_frame, target_face, temp_frame)
|
||||
|
||||
# Add mouth mask functionality back (only if enabled)
|
||||
if modules.globals.mouth_mask:
|
||||
# Create a mask for the target face
|
||||
face_mask = create_face_mask(target_face, temp_frame)
|
||||
|
||||
# Create the mouth mask
|
||||
mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon = (
|
||||
create_lower_mouth_mask(target_face, temp_frame)
|
||||
)
|
||||
|
||||
# Apply the mouth area
|
||||
swapped_frame = apply_mouth_area(
|
||||
swapped_frame, mouth_cutout, mouth_box, face_mask, lower_lip_polygon
|
||||
)
|
||||
|
||||
if modules.globals.show_mouth_mask_box:
|
||||
mouth_mask_data = (mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon)
|
||||
swapped_frame = draw_mouth_mask_visualization(
|
||||
swapped_frame, target_face, mouth_mask_data
|
||||
)
|
||||
|
||||
return swapped_frame
|
||||
|
||||
|
||||
def fix_forehead_hair_issue(swapped_frame: Frame, target_face: Face, original_frame: Frame) -> Frame:
|
||||
"""Fix hair falling on forehead by blending forehead area back to original"""
|
||||
try:
|
||||
# Get face bounding box
|
||||
bbox = target_face.bbox.astype(int)
|
||||
x1, y1, x2, y2 = bbox
|
||||
|
||||
# Ensure coordinates are within frame bounds
|
||||
h, w = swapped_frame.shape[:2]
|
||||
x1, y1 = max(0, x1), max(0, y1)
|
||||
x2, y2 = min(w, x2), min(h, y2)
|
||||
|
||||
if x2 <= x1 or y2 <= y1:
|
||||
return swapped_frame
|
||||
|
||||
# Focus on forehead area (upper 35% of face)
|
||||
forehead_height = int((y2 - y1) * 0.35)
|
||||
forehead_y2 = y1 + forehead_height
|
||||
|
||||
if forehead_y2 > y1:
|
||||
# Extract forehead regions
|
||||
swapped_forehead = swapped_frame[y1:forehead_y2, x1:x2]
|
||||
original_forehead = original_frame[y1:forehead_y2, x1:x2]
|
||||
|
||||
# Create a soft blend mask for forehead area
|
||||
mask = np.ones(swapped_forehead.shape[:2], dtype=np.float32)
|
||||
|
||||
# Apply strong Gaussian blur for very soft blending
|
||||
mask = cv2.GaussianBlur(mask, (31, 31), 10)
|
||||
mask = mask[:, :, np.newaxis]
|
||||
|
||||
# Blend forehead areas (keep much more of original to preserve hair)
|
||||
blended_forehead = (swapped_forehead * 0.3 + original_forehead * 0.7).astype(np.uint8)
|
||||
|
||||
# Apply the blended forehead back
|
||||
swapped_frame[y1:forehead_y2, x1:x2] = blended_forehead
|
||||
|
||||
return swapped_frame
|
||||
|
||||
except Exception:
|
||||
return swapped_frame
|
||||
|
||||
|
||||
def improve_forehead_matching(swapped_frame: Frame, source_face: Face, target_face: Face, original_frame: Frame) -> Frame:
|
||||
"""Create precise face mask - only swap core facial features (eyes, nose, cheeks, chin)"""
|
||||
try:
|
||||
# Get face landmarks for precise masking
|
||||
if hasattr(target_face, 'landmark_2d_106') and target_face.landmark_2d_106 is not None:
|
||||
landmarks = target_face.landmark_2d_106.astype(np.int32)
|
||||
|
||||
# Create precise face mask excluding forehead and hair
|
||||
mask = create_precise_face_mask(landmarks, swapped_frame.shape[:2])
|
||||
|
||||
if mask is not None:
|
||||
# Apply the precise mask
|
||||
mask_3d = mask[:, :, np.newaxis] / 255.0
|
||||
|
||||
# Blend only the core facial features
|
||||
result = (swapped_frame * mask_3d + original_frame * (1 - mask_3d)).astype(np.uint8)
|
||||
return result
|
||||
|
||||
# Fallback: use bounding box method but exclude forehead
|
||||
bbox = target_face.bbox.astype(int)
|
||||
x1, y1, x2, y2 = bbox
|
||||
|
||||
# Ensure coordinates are within frame bounds
|
||||
h, w = swapped_frame.shape[:2]
|
||||
x1, y1 = max(0, x1), max(0, y1)
|
||||
x2, y2 = min(w, x2), min(h, y2)
|
||||
|
||||
if x2 <= x1 or y2 <= y1:
|
||||
return swapped_frame
|
||||
|
||||
# Exclude forehead area (upper 25% of face) to avoid hair swapping
|
||||
forehead_height = int((y2 - y1) * 0.25)
|
||||
face_start_y = y1 + forehead_height
|
||||
|
||||
if face_start_y < y2:
|
||||
# Only blend the lower face area (eyes, nose, cheeks, chin)
|
||||
swapped_face_area = swapped_frame[face_start_y:y2, x1:x2]
|
||||
original_face_area = original_frame[face_start_y:y2, x1:x2]
|
||||
|
||||
# Create soft mask for the face area only
|
||||
mask = np.ones(swapped_face_area.shape[:2], dtype=np.float32)
|
||||
mask = cv2.GaussianBlur(mask, (15, 15), 5)
|
||||
mask = mask[:, :, np.newaxis]
|
||||
|
||||
# Apply the face area back (keep original forehead/hair)
|
||||
swapped_frame[face_start_y:y2, x1:x2] = swapped_face_area
|
||||
|
||||
return swapped_frame
|
||||
|
||||
except Exception:
|
||||
return swapped_frame
|
||||
|
||||
|
||||
def create_precise_face_mask(landmarks: np.ndarray, frame_shape: tuple) -> np.ndarray:
|
||||
"""Create precise mask for core facial features only (exclude forehead and hair)"""
|
||||
try:
|
||||
mask = np.zeros(frame_shape, dtype=np.uint8)
|
||||
|
||||
# For 106-point landmarks, use correct indices
|
||||
# Face contour (jawline) - points 0-32
|
||||
jaw_line = landmarks[0:33]
|
||||
|
||||
# Eyes area - approximate indices for 106-point model
|
||||
left_eye_area = landmarks[33:42] # Left eye region
|
||||
right_eye_area = landmarks[87:96] # Right eye region
|
||||
|
||||
# Eyebrows (start from eyebrow level, not forehead)
|
||||
left_eyebrow = landmarks[43:51] # Left eyebrow
|
||||
right_eyebrow = landmarks[97:105] # Right eyebrow
|
||||
|
||||
# Create face contour that excludes forehead
|
||||
# Start from eyebrow level and go around the face
|
||||
face_contour_points = []
|
||||
|
||||
# Add eyebrow points (this will be our "top" instead of forehead)
|
||||
face_contour_points.extend(left_eyebrow)
|
||||
face_contour_points.extend(right_eyebrow)
|
||||
|
||||
# Add jawline points (bottom and sides of face)
|
||||
face_contour_points.extend(jaw_line)
|
||||
|
||||
# Convert to numpy array
|
||||
face_contour_points = np.array(face_contour_points)
|
||||
|
||||
# Create convex hull for the core face area (excluding forehead)
|
||||
hull = cv2.convexHull(face_contour_points)
|
||||
cv2.fillConvexPoly(mask, hull, 255)
|
||||
|
||||
# Apply Gaussian blur for soft edges
|
||||
mask = cv2.GaussianBlur(mask, (21, 21), 7)
|
||||
|
||||
return mask
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error creating precise face mask: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def process_frame(source_face: Face, temp_frame: Frame) -> Frame:
|
||||
if modules.globals.color_correction:
|
||||
temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
|
||||
# Skip color correction for maximum FPS
|
||||
# if modules.globals.color_correction:
|
||||
# temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
|
||||
|
||||
if modules.globals.many_faces:
|
||||
many_faces = get_many_faces(temp_frame)
|
||||
if many_faces:
|
||||
for target_face in many_faces:
|
||||
if source_face and target_face:
|
||||
temp_frame = swap_face(source_face, target_face, temp_frame)
|
||||
else:
|
||||
print("Face detection failed for target/source.")
|
||||
temp_frame = swap_face_ultra_fast(source_face, target_face, temp_frame)
|
||||
else:
|
||||
target_face = get_one_face(temp_frame)
|
||||
if target_face and source_face:
|
||||
temp_frame = swap_face(source_face, target_face, temp_frame)
|
||||
else:
|
||||
logging.error("Face detection failed for target or source.")
|
||||
temp_frame = swap_face_ultra_fast(source_face, target_face, temp_frame)
|
||||
return temp_frame
|
||||
|
||||
|
||||
|
||||
def process_frame_v2(temp_frame: Frame, temp_frame_path: str = "") -> Frame:
|
||||
if is_image(modules.globals.target_path):
|
||||
if modules.globals.many_faces:
|
||||
|
@ -271,7 +454,6 @@ def create_lower_mouth_mask(
|
|||
mouth_cutout = None
|
||||
landmarks = face.landmark_2d_106
|
||||
if landmarks is not None:
|
||||
# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
||||
lower_lip_order = [
|
||||
65,
|
||||
66,
|
||||
|
@ -295,192 +477,74 @@ def create_lower_mouth_mask(
|
|||
2,
|
||||
65,
|
||||
]
|
||||
lower_lip_landmarks = landmarks[lower_lip_order].astype(
|
||||
np.float32
|
||||
) # Use float for precise calculations
|
||||
lower_lip_landmarks = landmarks[lower_lip_order].astype(np.float32)
|
||||
|
||||
# Calculate the center of the landmarks
|
||||
center = np.mean(lower_lip_landmarks, axis=0)
|
||||
|
||||
# Expand the landmarks outward
|
||||
expansion_factor = (
|
||||
1 + modules.globals.mask_down_size
|
||||
) # Adjust this for more or less expansion
|
||||
expansion_factor = 1 + modules.globals.mask_down_size
|
||||
expanded_landmarks = (lower_lip_landmarks - center) * expansion_factor + center
|
||||
|
||||
# Extend the top lip part
|
||||
toplip_indices = [
|
||||
20,
|
||||
0,
|
||||
1,
|
||||
2,
|
||||
3,
|
||||
4,
|
||||
5,
|
||||
] # Indices for landmarks 2, 65, 66, 62, 70, 69, 18
|
||||
toplip_extension = (
|
||||
modules.globals.mask_size * 0.5
|
||||
) # Adjust this factor to control the extension
|
||||
toplip_indices = [20, 0, 1, 2, 3, 4, 5]
|
||||
toplip_extension = modules.globals.mask_size * 0.5
|
||||
for idx in toplip_indices:
|
||||
direction = expanded_landmarks[idx] - center
|
||||
direction = direction / np.linalg.norm(direction)
|
||||
expanded_landmarks[idx] += direction * toplip_extension
|
||||
|
||||
# Extend the bottom part (chin area)
|
||||
chin_indices = [
|
||||
11,
|
||||
12,
|
||||
13,
|
||||
14,
|
||||
15,
|
||||
16,
|
||||
] # Indices for landmarks 21, 22, 23, 24, 0, 8
|
||||
chin_extension = 2 * 0.2 # Adjust this factor to control the extension
|
||||
chin_indices = [11, 12, 13, 14, 15, 16]
|
||||
chin_extension = 2 * 0.2
|
||||
for idx in chin_indices:
|
||||
expanded_landmarks[idx][1] += (
|
||||
expanded_landmarks[idx][1] - center[1]
|
||||
) * chin_extension
|
||||
|
||||
# Convert back to integer coordinates
|
||||
expanded_landmarks = expanded_landmarks.astype(np.int32)
|
||||
|
||||
# Calculate bounding box for the expanded lower mouth
|
||||
min_x, min_y = np.min(expanded_landmarks, axis=0)
|
||||
max_x, max_y = np.max(expanded_landmarks, axis=0)
|
||||
|
||||
# Add some padding to the bounding box
|
||||
padding = int((max_x - min_x) * 0.1) # 10% padding
|
||||
padding = int((max_x - min_x) * 0.1)
|
||||
min_x = max(0, min_x - padding)
|
||||
min_y = max(0, min_y - padding)
|
||||
max_x = min(frame.shape[1], max_x + padding)
|
||||
max_y = min(frame.shape[0], max_y + padding)
|
||||
|
||||
# Ensure the bounding box dimensions are valid
|
||||
if max_x <= min_x or max_y <= min_y:
|
||||
if (max_x - min_x) <= 1:
|
||||
max_x = min_x + 1
|
||||
if (max_y - min_y) <= 1:
|
||||
max_y = min_y + 1
|
||||
|
||||
# Create the mask
|
||||
mask_roi = np.zeros((max_y - min_y, max_x - min_x), dtype=np.uint8)
|
||||
cv2.fillPoly(mask_roi, [expanded_landmarks - [min_x, min_y]], 255)
|
||||
|
||||
# Apply Gaussian blur to soften the mask edges
|
||||
mask_roi = cv2.GaussianBlur(mask_roi, (15, 15), 5)
|
||||
|
||||
# Place the mask ROI in the full-sized mask
|
||||
# Improved smoothing for mouth mask
|
||||
mask_roi = cv2.GaussianBlur(mask_roi, (25, 25), 8)
|
||||
mask[min_y:max_y, min_x:max_x] = mask_roi
|
||||
|
||||
# Extract the masked area from the frame
|
||||
mouth_cutout = frame[min_y:max_y, min_x:max_x].copy()
|
||||
|
||||
# Return the expanded lower lip polygon in original frame coordinates
|
||||
lower_lip_polygon = expanded_landmarks
|
||||
|
||||
return mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon
|
||||
|
||||
|
||||
def draw_mouth_mask_visualization(
|
||||
frame: Frame, face: Face, mouth_mask_data: tuple
|
||||
) -> Frame:
|
||||
def draw_mouth_mask_visualization(frame: Frame, face: Face, mouth_mask_data: tuple) -> Frame:
|
||||
landmarks = face.landmark_2d_106
|
||||
if landmarks is not None and mouth_mask_data is not None:
|
||||
mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon = (
|
||||
mouth_mask_data
|
||||
)
|
||||
|
||||
mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon = mouth_mask_data
|
||||
vis_frame = frame.copy()
|
||||
|
||||
# Ensure coordinates are within frame bounds
|
||||
height, width = vis_frame.shape[:2]
|
||||
min_x, min_y = max(0, min_x), max(0, min_y)
|
||||
max_x, max_y = min(width, max_x), min(height, max_y)
|
||||
|
||||
# Adjust mask to match the region size
|
||||
mask_region = mask[0 : max_y - min_y, 0 : max_x - min_x]
|
||||
|
||||
# Remove the color mask overlay
|
||||
# color_mask = cv2.applyColorMap((mask_region * 255).astype(np.uint8), cv2.COLORMAP_JET)
|
||||
|
||||
# Ensure shapes match before blending
|
||||
vis_region = vis_frame[min_y:max_y, min_x:max_x]
|
||||
# Remove blending with color_mask
|
||||
# if vis_region.shape[:2] == color_mask.shape[:2]:
|
||||
# blended = cv2.addWeighted(vis_region, 0.7, color_mask, 0.3, 0)
|
||||
# vis_frame[min_y:max_y, min_x:max_x] = blended
|
||||
|
||||
# Draw the lower lip polygon
|
||||
cv2.polylines(vis_frame, [lower_lip_polygon], True, (0, 255, 0), 2)
|
||||
|
||||
# Remove the red box
|
||||
# cv2.rectangle(vis_frame, (min_x, min_y), (max_x, max_y), (0, 0, 255), 2)
|
||||
|
||||
# Visualize the feathered mask
|
||||
feather_amount = max(
|
||||
1,
|
||||
min(
|
||||
30,
|
||||
(max_x - min_x) // modules.globals.mask_feather_ratio,
|
||||
(max_y - min_y) // modules.globals.mask_feather_ratio,
|
||||
),
|
||||
)
|
||||
# Ensure kernel size is odd
|
||||
kernel_size = 2 * feather_amount + 1
|
||||
feathered_mask = cv2.GaussianBlur(
|
||||
mask_region.astype(float), (kernel_size, kernel_size), 0
|
||||
)
|
||||
feathered_mask = (feathered_mask / feathered_mask.max() * 255).astype(np.uint8)
|
||||
# Remove the feathered mask color overlay
|
||||
# color_feathered_mask = cv2.applyColorMap(feathered_mask, cv2.COLORMAP_VIRIDIS)
|
||||
|
||||
# Ensure shapes match before blending feathered mask
|
||||
# if vis_region.shape == color_feathered_mask.shape:
|
||||
# blended_feathered = cv2.addWeighted(vis_region, 0.7, color_feathered_mask, 0.3, 0)
|
||||
# vis_frame[min_y:max_y, min_x:max_x] = blended_feathered
|
||||
|
||||
# Add labels
|
||||
cv2.putText(
|
||||
vis_frame,
|
||||
"Lower Mouth Mask",
|
||||
(min_x, min_y - 10),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.5,
|
||||
(255, 255, 255),
|
||||
1,
|
||||
)
|
||||
cv2.putText(
|
||||
vis_frame,
|
||||
"Feathered Mask",
|
||||
(min_x, max_y + 20),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.5,
|
||||
(255, 255, 255),
|
||||
1,
|
||||
)
|
||||
|
||||
cv2.putText(vis_frame, "Lower Mouth Mask", (min_x, min_y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
||||
return vis_frame
|
||||
return frame
|
||||
|
||||
|
||||
def apply_mouth_area(
|
||||
frame: np.ndarray,
|
||||
mouth_cutout: np.ndarray,
|
||||
mouth_box: tuple,
|
||||
face_mask: np.ndarray,
|
||||
mouth_polygon: np.ndarray,
|
||||
) -> np.ndarray:
|
||||
def apply_mouth_area(frame: np.ndarray, mouth_cutout: np.ndarray, mouth_box: tuple, face_mask: np.ndarray, mouth_polygon: np.ndarray) -> np.ndarray:
|
||||
min_x, min_y, max_x, max_y = mouth_box
|
||||
box_width = max_x - min_x
|
||||
box_height = max_y - min_y
|
||||
|
||||
if (
|
||||
mouth_cutout is None
|
||||
or box_width is None
|
||||
or box_height is None
|
||||
or face_mask is None
|
||||
or mouth_polygon is None
|
||||
):
|
||||
if mouth_cutout is None or box_width is None or box_height is None or face_mask is None or mouth_polygon is None:
|
||||
return frame
|
||||
|
||||
try:
|
||||
|
@ -488,44 +552,33 @@ def apply_mouth_area(
|
|||
roi = frame[min_y:max_y, min_x:max_x]
|
||||
|
||||
if roi.shape != resized_mouth_cutout.shape:
|
||||
resized_mouth_cutout = cv2.resize(
|
||||
resized_mouth_cutout, (roi.shape[1], roi.shape[0])
|
||||
)
|
||||
resized_mouth_cutout = cv2.resize(resized_mouth_cutout, (roi.shape[1], roi.shape[0]))
|
||||
|
||||
color_corrected_mouth = apply_color_transfer(resized_mouth_cutout, roi)
|
||||
|
||||
# Use the provided mouth polygon to create the mask
|
||||
polygon_mask = np.zeros(roi.shape[:2], dtype=np.uint8)
|
||||
adjusted_polygon = mouth_polygon - [min_x, min_y]
|
||||
cv2.fillPoly(polygon_mask, [adjusted_polygon], 255)
|
||||
|
||||
# Apply feathering to the polygon mask
|
||||
feather_amount = min(
|
||||
30,
|
||||
box_width // modules.globals.mask_feather_ratio,
|
||||
box_height // modules.globals.mask_feather_ratio,
|
||||
)
|
||||
feathered_mask = cv2.GaussianBlur(
|
||||
polygon_mask.astype(float), (0, 0), feather_amount
|
||||
)
|
||||
# Improved feathering for smoother mouth mask
|
||||
feather_amount = min(35, box_width // modules.globals.mask_feather_ratio, box_height // modules.globals.mask_feather_ratio)
|
||||
feathered_mask = cv2.GaussianBlur(polygon_mask.astype(float), (0, 0), feather_amount * 1.2)
|
||||
feathered_mask = feathered_mask / feathered_mask.max()
|
||||
|
||||
# Additional smoothing pass for extra softness
|
||||
feathered_mask = cv2.GaussianBlur(feathered_mask, (7, 7), 2)
|
||||
|
||||
# Fix black line artifacts by ensuring smooth mask transitions
|
||||
feathered_mask = np.clip(feathered_mask, 0.1, 0.9) # Avoid pure 0 and 1 values
|
||||
|
||||
face_mask_roi = face_mask[min_y:max_y, min_x:max_x]
|
||||
combined_mask = feathered_mask * (face_mask_roi / 255.0)
|
||||
|
||||
combined_mask = combined_mask[:, :, np.newaxis]
|
||||
blended = (
|
||||
color_corrected_mouth * combined_mask + roi * (1 - combined_mask)
|
||||
).astype(np.uint8)
|
||||
blended = (color_corrected_mouth * combined_mask + roi * (1 - combined_mask)).astype(np.uint8)
|
||||
|
||||
# Apply face mask to blended result
|
||||
face_mask_3channel = (
|
||||
np.repeat(face_mask_roi[:, :, np.newaxis], 3, axis=2) / 255.0
|
||||
)
|
||||
face_mask_3channel = np.repeat(face_mask_roi[:, :, np.newaxis], 3, axis=2) / 255.0
|
||||
final_blend = blended * face_mask_3channel + roi * (1 - face_mask_3channel)
|
||||
|
||||
frame[min_y:max_y, min_x:max_x] = final_blend.astype(np.uint8)
|
||||
except Exception as e:
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
return frame
|
||||
|
@ -535,10 +588,7 @@ def create_face_mask(face: Face, frame: Frame) -> np.ndarray:
|
|||
mask = np.zeros(frame.shape[:2], dtype=np.uint8)
|
||||
landmarks = face.landmark_2d_106
|
||||
if landmarks is not None:
|
||||
# Convert landmarks to int32
|
||||
landmarks = landmarks.astype(np.int32)
|
||||
|
||||
# Extract facial features
|
||||
right_side_face = landmarks[0:16]
|
||||
left_side_face = landmarks[17:32]
|
||||
right_eye = landmarks[33:42]
|
||||
|
@ -546,39 +596,22 @@ def create_face_mask(face: Face, frame: Frame) -> np.ndarray:
|
|||
left_eye = landmarks[87:96]
|
||||
left_eye_brow = landmarks[97:105]
|
||||
|
||||
# Calculate forehead extension
|
||||
right_eyebrow_top = np.min(right_eye_brow[:, 1])
|
||||
left_eyebrow_top = np.min(left_eye_brow[:, 1])
|
||||
eyebrow_top = min(right_eyebrow_top, left_eyebrow_top)
|
||||
|
||||
face_top = np.min([right_side_face[0, 1], left_side_face[-1, 1]])
|
||||
forehead_height = face_top - eyebrow_top
|
||||
extended_forehead_height = int(forehead_height * 5.0) # Extend by 50%
|
||||
extended_forehead_height = int(forehead_height * 5.0)
|
||||
|
||||
# Create forehead points
|
||||
forehead_left = right_side_face[0].copy()
|
||||
forehead_right = left_side_face[-1].copy()
|
||||
forehead_left[1] -= extended_forehead_height
|
||||
forehead_right[1] -= extended_forehead_height
|
||||
|
||||
# Combine all points to create the face outline
|
||||
face_outline = np.vstack(
|
||||
[
|
||||
[forehead_left],
|
||||
right_side_face,
|
||||
left_side_face[
|
||||
::-1
|
||||
], # Reverse left side to create a continuous outline
|
||||
[forehead_right],
|
||||
]
|
||||
)
|
||||
face_outline = np.vstack([[forehead_left], right_side_face, left_side_face[::-1], [forehead_right]])
|
||||
padding = int(np.linalg.norm(right_side_face[0] - left_side_face[-1]) * 0.05)
|
||||
|
||||
# Calculate padding
|
||||
padding = int(
|
||||
np.linalg.norm(right_side_face[0] - left_side_face[-1]) * 0.05
|
||||
) # 5% of face width
|
||||
|
||||
# Create a slightly larger convex hull for padding
|
||||
hull = cv2.convexHull(face_outline)
|
||||
hull_padded = []
|
||||
for point in hull:
|
||||
|
@ -590,33 +623,23 @@ def create_face_mask(face: Face, frame: Frame) -> np.ndarray:
|
|||
hull_padded.append(padded_point)
|
||||
|
||||
hull_padded = np.array(hull_padded, dtype=np.int32)
|
||||
|
||||
# Fill the padded convex hull
|
||||
cv2.fillConvexPoly(mask, hull_padded, 255)
|
||||
|
||||
# Smooth the mask edges
|
||||
mask = cv2.GaussianBlur(mask, (5, 5), 3)
|
||||
|
||||
return mask
|
||||
|
||||
|
||||
def apply_color_transfer(source, target):
|
||||
"""
|
||||
Apply color transfer from target to source image
|
||||
"""
|
||||
source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype("float32")
|
||||
target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype("float32")
|
||||
|
||||
source_mean, source_std = cv2.meanStdDev(source)
|
||||
target_mean, target_std = cv2.meanStdDev(target)
|
||||
|
||||
# Reshape mean and std to be broadcastable
|
||||
source_mean = source_mean.reshape(1, 1, 3)
|
||||
source_std = source_std.reshape(1, 1, 3)
|
||||
target_mean = target_mean.reshape(1, 1, 3)
|
||||
target_std = target_std.reshape(1, 1, 3)
|
||||
|
||||
# Perform the color transfer
|
||||
source = (source - source_mean) * (target_std / source_std) + target_mean
|
||||
|
||||
return cv2.cvtColor(np.clip(source, 0, 255).astype("uint8"), cv2.COLOR_LAB2BGR)
|
|
@ -14,8 +14,8 @@ torch; sys_platform != 'darwin'
|
|||
torch==2.5.1; sys_platform == 'darwin'
|
||||
torchvision; sys_platform != 'darwin'
|
||||
torchvision==0.20.1; sys_platform == 'darwin'
|
||||
onnxruntime-silicon==1.16.3; sys_platform == 'darwin' and platform_machine == 'arm64'
|
||||
onnxruntime-gpu==1.22.0; sys_platform != 'darwin'
|
||||
tensorflow; sys_platform != 'darwin'
|
||||
opennsfw2==0.10.2
|
||||
protobuf==4.25.1
|
||||
pygrabber
|
Loading…
Reference in New Issue