Updates for macOS and coreML / Metal
parent
fb695b0208
commit
359848a54e
180
modules/core.py
180
modules/core.py
|
@ -5,6 +5,8 @@ if any(arg.startswith('--execution-provider') for arg in sys.argv):
|
||||||
os.environ['OMP_NUM_THREADS'] = '1'
|
os.environ['OMP_NUM_THREADS'] = '1'
|
||||||
# reduce tensorflow log level
|
# reduce tensorflow log level
|
||||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
||||||
|
# Force TensorFlow to use Metal
|
||||||
|
os.environ['TENSORFLOW_METAL'] = '1'
|
||||||
import warnings
|
import warnings
|
||||||
from typing import List
|
from typing import List
|
||||||
import platform
|
import platform
|
||||||
|
@ -35,23 +37,17 @@ def parse_args() -> None:
|
||||||
program.add_argument('-t', '--target', help='select an target image or video', dest='target_path')
|
program.add_argument('-t', '--target', help='select an target image or video', dest='target_path')
|
||||||
program.add_argument('-o', '--output', help='select output file or directory', dest='output_path')
|
program.add_argument('-o', '--output', help='select output file or directory', dest='output_path')
|
||||||
program.add_argument('--frame-processor', help='pipeline of frame processors', dest='frame_processor', default=['face_swapper'], choices=['face_swapper', 'face_enhancer'], nargs='+')
|
program.add_argument('--frame-processor', help='pipeline of frame processors', dest='frame_processor', default=['face_swapper'], choices=['face_swapper', 'face_enhancer'], nargs='+')
|
||||||
program.add_argument('--keep-fps', help='keep original fps', dest='keep_fps', action='store_true', default=False)
|
program.add_argument('--keep-fps', help='keep original fps', dest='keep_fps', action='store_true', default=True)
|
||||||
program.add_argument('--keep-audio', help='keep original audio', dest='keep_audio', action='store_true', default=True)
|
program.add_argument('--keep-audio', help='keep original audio', dest='keep_audio', action='store_true', default=True)
|
||||||
program.add_argument('--keep-frames', help='keep temporary frames', dest='keep_frames', action='store_true', default=False)
|
program.add_argument('--keep-frames', help='keep temporary frames', dest='keep_frames', action='store_true', default=True)
|
||||||
program.add_argument('--many-faces', help='process every face', dest='many_faces', action='store_true', default=False)
|
program.add_argument('--many-faces', help='process every face', dest='many_faces', action='store_true', default=False)
|
||||||
program.add_argument('--video-encoder', help='adjust output video encoder', dest='video_encoder', default='libx264', choices=['libx264', 'libx265', 'libvpx-vp9'])
|
program.add_argument('--video-encoder', help='adjust output video encoder', dest='video_encoder', default='libx264', choices=['libx264', 'libx265', 'libvpx-vp9'])
|
||||||
program.add_argument('--video-quality', help='adjust output video quality', dest='video_quality', type=int, default=18, choices=range(52), metavar='[0-51]')
|
program.add_argument('--video-quality', help='adjust output video quality', dest='video_quality', type=int, default=50, choices=range(52), metavar='[0-51]')
|
||||||
program.add_argument('--max-memory', help='maximum amount of RAM in GB', dest='max_memory', type=int, default=suggest_max_memory())
|
program.add_argument('--max-memory', help='maximum amount of RAM in GB', dest='max_memory', type=int, default=suggest_max_memory())
|
||||||
program.add_argument('--execution-provider', help='execution provider', dest='execution_provider', default=['cpu'], choices=suggest_execution_providers(), nargs='+')
|
program.add_argument('--execution-provider', help='execution provider', dest='execution_provider', default=['coreml'], choices=suggest_execution_providers(), nargs='+')
|
||||||
program.add_argument('--execution-threads', help='number of execution threads', dest='execution_threads', type=int, default=suggest_execution_threads())
|
program.add_argument('--execution-threads', help='number of execution threads', dest='execution_threads', type=int, default=suggest_execution_threads())
|
||||||
program.add_argument('-v', '--version', action='version', version=f'{modules.metadata.name} {modules.metadata.version}')
|
program.add_argument('-v', '--version', action='version', version=f'{modules.metadata.name} {modules.metadata.version}')
|
||||||
|
|
||||||
# register deprecated args
|
|
||||||
program.add_argument('-f', '--face', help=argparse.SUPPRESS, dest='source_path_deprecated')
|
|
||||||
program.add_argument('--cpu-cores', help=argparse.SUPPRESS, dest='cpu_cores_deprecated', type=int)
|
|
||||||
program.add_argument('--gpu-vendor', help=argparse.SUPPRESS, dest='gpu_vendor_deprecated')
|
|
||||||
program.add_argument('--gpu-threads', help=argparse.SUPPRESS, dest='gpu_threads_deprecated', type=int)
|
|
||||||
|
|
||||||
args = program.parse_args()
|
args = program.parse_args()
|
||||||
|
|
||||||
modules.globals.source_path = args.source_path
|
modules.globals.source_path = args.source_path
|
||||||
|
@ -66,10 +62,9 @@ def parse_args() -> None:
|
||||||
modules.globals.video_encoder = args.video_encoder
|
modules.globals.video_encoder = args.video_encoder
|
||||||
modules.globals.video_quality = args.video_quality
|
modules.globals.video_quality = args.video_quality
|
||||||
modules.globals.max_memory = args.max_memory
|
modules.globals.max_memory = args.max_memory
|
||||||
modules.globals.execution_providers = decode_execution_providers(args.execution_provider)
|
modules.globals.execution_providers = ['CoreMLExecutionProvider'] # Force CoreML
|
||||||
modules.globals.execution_threads = args.execution_threads
|
modules.globals.execution_threads = args.execution_threads
|
||||||
|
|
||||||
#for ENHANCER tumbler:
|
|
||||||
if 'face_enhancer' in args.frame_processor:
|
if 'face_enhancer' in args.frame_processor:
|
||||||
modules.globals.fp_ui['face_enhancer'] = True
|
modules.globals.fp_ui['face_enhancer'] = True
|
||||||
else:
|
else:
|
||||||
|
@ -77,36 +72,6 @@ def parse_args() -> None:
|
||||||
|
|
||||||
modules.globals.nsfw = False
|
modules.globals.nsfw = False
|
||||||
|
|
||||||
# translate deprecated args
|
|
||||||
if args.source_path_deprecated:
|
|
||||||
print('\033[33mArgument -f and --face are deprecated. Use -s and --source instead.\033[0m')
|
|
||||||
modules.globals.source_path = args.source_path_deprecated
|
|
||||||
modules.globals.output_path = normalize_output_path(args.source_path_deprecated, modules.globals.target_path, args.output_path)
|
|
||||||
if args.cpu_cores_deprecated:
|
|
||||||
print('\033[33mArgument --cpu-cores is deprecated. Use --execution-threads instead.\033[0m')
|
|
||||||
modules.globals.execution_threads = args.cpu_cores_deprecated
|
|
||||||
if args.gpu_vendor_deprecated == 'apple':
|
|
||||||
print('\033[33mArgument --gpu-vendor apple is deprecated. Use --execution-provider coreml instead.\033[0m')
|
|
||||||
modules.globals.execution_providers = decode_execution_providers(['coreml'])
|
|
||||||
if args.gpu_vendor_deprecated == 'nvidia':
|
|
||||||
print('\033[33mArgument --gpu-vendor nvidia is deprecated. Use --execution-provider cuda instead.\033[0m')
|
|
||||||
modules.globals.execution_providers = decode_execution_providers(['cuda'])
|
|
||||||
if args.gpu_vendor_deprecated == 'amd':
|
|
||||||
print('\033[33mArgument --gpu-vendor amd is deprecated. Use --execution-provider cuda instead.\033[0m')
|
|
||||||
modules.globals.execution_providers = decode_execution_providers(['rocm'])
|
|
||||||
if args.gpu_threads_deprecated:
|
|
||||||
print('\033[33mArgument --gpu-threads is deprecated. Use --execution-threads instead.\033[0m')
|
|
||||||
modules.globals.execution_threads = args.gpu_threads_deprecated
|
|
||||||
|
|
||||||
|
|
||||||
def encode_execution_providers(execution_providers: List[str]) -> List[str]:
|
|
||||||
return [execution_provider.replace('ExecutionProvider', '').lower() for execution_provider in execution_providers]
|
|
||||||
|
|
||||||
|
|
||||||
def decode_execution_providers(execution_providers: List[str]) -> List[str]:
|
|
||||||
return [provider for provider, encoded_execution_provider in zip(onnxruntime.get_available_providers(), encode_execution_providers(onnxruntime.get_available_providers()))
|
|
||||||
if any(execution_provider in encoded_execution_provider for execution_provider in execution_providers)]
|
|
||||||
|
|
||||||
|
|
||||||
def suggest_max_memory() -> int:
|
def suggest_max_memory() -> int:
|
||||||
if platform.system().lower() == 'darwin':
|
if platform.system().lower() == 'darwin':
|
||||||
|
@ -115,39 +80,22 @@ def suggest_max_memory() -> int:
|
||||||
|
|
||||||
|
|
||||||
def suggest_execution_providers() -> List[str]:
|
def suggest_execution_providers() -> List[str]:
|
||||||
return encode_execution_providers(onnxruntime.get_available_providers())
|
return ['coreml'] # Only suggest CoreML
|
||||||
|
|
||||||
|
|
||||||
def suggest_execution_threads() -> int:
|
def suggest_execution_threads() -> int:
|
||||||
if 'DmlExecutionProvider' in modules.globals.execution_providers:
|
|
||||||
return 1
|
|
||||||
if 'ROCMExecutionProvider' in modules.globals.execution_providers:
|
|
||||||
return 1
|
|
||||||
return 8
|
return 8
|
||||||
|
|
||||||
|
|
||||||
def limit_resources() -> None:
|
def limit_resources() -> None:
|
||||||
# prevent tensorflow memory leak
|
|
||||||
gpus = tensorflow.config.experimental.list_physical_devices('GPU')
|
|
||||||
for gpu in gpus:
|
|
||||||
tensorflow.config.experimental.set_memory_growth(gpu, True)
|
|
||||||
# limit memory usage
|
|
||||||
if modules.globals.max_memory:
|
if modules.globals.max_memory:
|
||||||
memory = modules.globals.max_memory * 1024 ** 3
|
memory = modules.globals.max_memory * 1024 ** 6
|
||||||
if platform.system().lower() == 'darwin':
|
import resource
|
||||||
memory = modules.globals.max_memory * 1024 ** 6
|
resource.setrlimit(resource.RLIMIT_DATA, (memory, memory))
|
||||||
if platform.system().lower() == 'windows':
|
|
||||||
import ctypes
|
|
||||||
kernel32 = ctypes.windll.kernel32
|
|
||||||
kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory))
|
|
||||||
else:
|
|
||||||
import resource
|
|
||||||
resource.setrlimit(resource.RLIMIT_DATA, (memory, memory))
|
|
||||||
|
|
||||||
|
|
||||||
def release_resources() -> None:
|
def release_resources() -> None:
|
||||||
if 'CUDAExecutionProvider' in modules.globals.execution_providers:
|
pass # No need to release CUDA resources
|
||||||
torch.cuda.empty_cache()
|
|
||||||
|
|
||||||
|
|
||||||
def pre_check() -> bool:
|
def pre_check() -> bool:
|
||||||
|
@ -170,23 +118,28 @@ def start() -> None:
|
||||||
for frame_processor in get_frame_processors_modules(modules.globals.frame_processors):
|
for frame_processor in get_frame_processors_modules(modules.globals.frame_processors):
|
||||||
if not frame_processor.pre_start():
|
if not frame_processor.pre_start():
|
||||||
return
|
return
|
||||||
# process image to image
|
|
||||||
if has_image_extension(modules.globals.target_path):
|
if has_image_extension(modules.globals.target_path):
|
||||||
if modules.globals.nsfw == False:
|
process_image()
|
||||||
from modules.predicter import predict_image
|
else:
|
||||||
if predict_image(modules.globals.target_path):
|
process_video()
|
||||||
destroy()
|
|
||||||
shutil.copy2(modules.globals.target_path, modules.globals.output_path)
|
|
||||||
for frame_processor in get_frame_processors_modules(modules.globals.frame_processors):
|
def process_image():
|
||||||
update_status('Progressing...', frame_processor.NAME)
|
if modules.globals.nsfw == False:
|
||||||
frame_processor.process_image(modules.globals.source_path, modules.globals.output_path, modules.globals.output_path)
|
from modules.predicter import predict_image
|
||||||
release_resources()
|
if predict_image(modules.globals.target_path):
|
||||||
if is_image(modules.globals.target_path):
|
destroy()
|
||||||
update_status('Processing to image succeed!')
|
shutil.copy2(modules.globals.target_path, modules.globals.output_path)
|
||||||
else:
|
for frame_processor in get_frame_processors_modules(modules.globals.frame_processors):
|
||||||
update_status('Processing to image failed!')
|
update_status('Progressing...', frame_processor.NAME)
|
||||||
return
|
frame_processor.process_image(modules.globals.source_path, modules.globals.output_path, modules.globals.output_path)
|
||||||
# process image to videos
|
if is_image(modules.globals.target_path):
|
||||||
|
update_status('Processing to image succeed!')
|
||||||
|
else:
|
||||||
|
update_status('Processing to image failed!')
|
||||||
|
|
||||||
|
|
||||||
|
def process_video():
|
||||||
if modules.globals.nsfw == False:
|
if modules.globals.nsfw == False:
|
||||||
from modules.predicter import predict_video
|
from modules.predicter import predict_video
|
||||||
if predict_video(modules.globals.target_path):
|
if predict_video(modules.globals.target_path):
|
||||||
|
@ -199,8 +152,6 @@ def start() -> None:
|
||||||
for frame_processor in get_frame_processors_modules(modules.globals.frame_processors):
|
for frame_processor in get_frame_processors_modules(modules.globals.frame_processors):
|
||||||
update_status('Progressing...', frame_processor.NAME)
|
update_status('Progressing...', frame_processor.NAME)
|
||||||
frame_processor.process_video(modules.globals.source_path, temp_frame_paths)
|
frame_processor.process_video(modules.globals.source_path, temp_frame_paths)
|
||||||
release_resources()
|
|
||||||
# handles fps
|
|
||||||
if modules.globals.keep_fps:
|
if modules.globals.keep_fps:
|
||||||
update_status('Detecting fps...')
|
update_status('Detecting fps...')
|
||||||
fps = detect_fps(modules.globals.target_path)
|
fps = detect_fps(modules.globals.target_path)
|
||||||
|
@ -209,7 +160,6 @@ def start() -> None:
|
||||||
else:
|
else:
|
||||||
update_status('Creating video with 30.0 fps...')
|
update_status('Creating video with 30.0 fps...')
|
||||||
create_video(modules.globals.target_path)
|
create_video(modules.globals.target_path)
|
||||||
# handle audio
|
|
||||||
if modules.globals.keep_audio:
|
if modules.globals.keep_audio:
|
||||||
if modules.globals.keep_fps:
|
if modules.globals.keep_fps:
|
||||||
update_status('Restoring audio...')
|
update_status('Restoring audio...')
|
||||||
|
@ -218,7 +168,6 @@ def start() -> None:
|
||||||
restore_audio(modules.globals.target_path, modules.globals.output_path)
|
restore_audio(modules.globals.target_path, modules.globals.output_path)
|
||||||
else:
|
else:
|
||||||
move_temp(modules.globals.target_path, modules.globals.output_path)
|
move_temp(modules.globals.target_path, modules.globals.output_path)
|
||||||
# clean and validate
|
|
||||||
clean_temp(modules.globals.target_path)
|
clean_temp(modules.globals.target_path)
|
||||||
if is_video(modules.globals.target_path):
|
if is_video(modules.globals.target_path):
|
||||||
update_status('Processing to video succeed!')
|
update_status('Processing to video succeed!')
|
||||||
|
@ -240,6 +189,69 @@ def run() -> None:
|
||||||
if not frame_processor.pre_check():
|
if not frame_processor.pre_check():
|
||||||
return
|
return
|
||||||
limit_resources()
|
limit_resources()
|
||||||
|
print(f"ONNX Runtime version: {onnxruntime.__version__}")
|
||||||
|
print(f"Available execution providers: {onnxruntime.get_available_providers()}")
|
||||||
|
print(f"Selected execution provider: CoreMLExecutionProvider")
|
||||||
|
|
||||||
|
# Configure ONNX Runtime to use only CoreML
|
||||||
|
onnxruntime.set_default_logger_severity(3) # Set to WARNING level
|
||||||
|
options = onnxruntime.SessionOptions()
|
||||||
|
options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||||
|
|
||||||
|
# Test CoreML with a dummy model
|
||||||
|
try:
|
||||||
|
import numpy as np
|
||||||
|
from onnx import helper, TensorProto
|
||||||
|
|
||||||
|
# Create a simple ONNX model
|
||||||
|
X = helper.make_tensor_value_info('input', TensorProto.FLOAT, [1, 3, 224, 224])
|
||||||
|
Y = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 3, 224, 224])
|
||||||
|
node = helper.make_node('Identity', ['input'], ['output'])
|
||||||
|
graph = helper.make_graph([node], 'test_model', [X], [Y])
|
||||||
|
model = helper.make_model(graph)
|
||||||
|
|
||||||
|
# Save the model
|
||||||
|
model_path = 'test_model.onnx'
|
||||||
|
with open(model_path, 'wb') as f:
|
||||||
|
f.write(model.SerializeToString())
|
||||||
|
|
||||||
|
# Create a CoreML session
|
||||||
|
session = onnxruntime.InferenceSession(model_path, options, providers=['CoreMLExecutionProvider'])
|
||||||
|
|
||||||
|
# Run inference
|
||||||
|
input_data = np.random.rand(1, 3, 224, 224).astype(np.float32)
|
||||||
|
output = session.run(None, {'input': input_data})
|
||||||
|
|
||||||
|
print("CoreML init successful and being used")
|
||||||
|
print(f"Input shape: {input_data.shape}, Output shape: {output[0].shape}")
|
||||||
|
|
||||||
|
# Clean up
|
||||||
|
os.remove(model_path)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error testing CoreML: {str(e)}")
|
||||||
|
print("The application may not be able to use GPU acceleration")
|
||||||
|
|
||||||
|
# Configure TensorFlow to use Metal
|
||||||
|
try:
|
||||||
|
tf_devices = tensorflow.config.list_physical_devices()
|
||||||
|
print("TensorFlow devices:", tf_devices)
|
||||||
|
if any('GPU' in device.name for device in tf_devices):
|
||||||
|
print("TensorFlow is using GPU (Metal)")
|
||||||
|
else:
|
||||||
|
print("TensorFlow is not using GPU")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error configuring TensorFlow: {str(e)}")
|
||||||
|
|
||||||
|
# Configure PyTorch to use MPS (Metal Performance Shaders)
|
||||||
|
try:
|
||||||
|
if torch.backends.mps.is_available():
|
||||||
|
print("PyTorch is using MPS (Metal Performance Shaders)")
|
||||||
|
torch.set_default_device('mps')
|
||||||
|
else:
|
||||||
|
print("PyTorch MPS is not available")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error configuring PyTorch: {str(e)}")
|
||||||
|
|
||||||
if modules.globals.headless:
|
if modules.globals.headless:
|
||||||
start()
|
start()
|
||||||
else:
|
else:
|
||||||
|
|
|
@ -17,7 +17,7 @@ NAME = 'DLC.FACE-SWAPPER'
|
||||||
|
|
||||||
def pre_check() -> bool:
|
def pre_check() -> bool:
|
||||||
download_directory_path = resolve_relative_path('../models')
|
download_directory_path = resolve_relative_path('../models')
|
||||||
conditional_download(download_directory_path, ['https://huggingface.co/hacksider/deep-live-cam/blob/main/inswapper_128_fp16.onnx'])
|
conditional_download(download_directory_path, ['https://huggingface.co/hacksider/deep-live-cam/blob/main/inswapper_128.onnx'])
|
||||||
return True
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
@ -39,7 +39,7 @@ def get_face_swapper() -> Any:
|
||||||
|
|
||||||
with THREAD_LOCK:
|
with THREAD_LOCK:
|
||||||
if FACE_SWAPPER is None:
|
if FACE_SWAPPER is None:
|
||||||
model_path = resolve_relative_path('../models/inswapper_128_fp16.onnx')
|
model_path = resolve_relative_path('../models/inswapper_128.onnx')
|
||||||
FACE_SWAPPER = insightface.model_zoo.get_model(model_path, providers=modules.globals.execution_providers)
|
FACE_SWAPPER = insightface.model_zoo.get_model(model_path, providers=modules.globals.execution_providers)
|
||||||
return FACE_SWAPPER
|
return FACE_SWAPPER
|
||||||
|
|
||||||
|
|
|
@ -257,11 +257,11 @@ def webcam_preview():
|
||||||
global preview_label, PREVIEW
|
global preview_label, PREVIEW
|
||||||
|
|
||||||
cap = cv2.VideoCapture(0) # Use index for the webcam (adjust the index accordingly if necessary)
|
cap = cv2.VideoCapture(0) # Use index for the webcam (adjust the index accordingly if necessary)
|
||||||
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 960) # Set the width of the resolution
|
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1024) # Set the width of the resolution
|
||||||
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 540) # Set the height of the resolution
|
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 768) # Set the height of the resolution
|
||||||
cap.set(cv2.CAP_PROP_FPS, 60) # Set the frame rate of the webcam
|
cap.set(cv2.CAP_PROP_FPS, 60) # Set the frame rate of the webcam
|
||||||
PREVIEW_MAX_WIDTH = 960
|
PREVIEW_MAX_WIDTH = 1024
|
||||||
PREVIEW_MAX_HEIGHT = 540
|
PREVIEW_MAX_HEIGHT = 768
|
||||||
|
|
||||||
preview_label.configure(image=None) # Reset the preview image before startup
|
preview_label.configure(image=None) # Reset the preview image before startup
|
||||||
|
|
||||||
|
@ -285,7 +285,7 @@ def webcam_preview():
|
||||||
for frame_processor in frame_processors:
|
for frame_processor in frame_processors:
|
||||||
temp_frame = frame_processor.process_frame(source_image, temp_frame)
|
temp_frame = frame_processor.process_frame(source_image, temp_frame)
|
||||||
|
|
||||||
image = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) # Convert the image to RGB format to display it with Tkinter
|
image = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) # Convert the image to RGB format to display it with Tkinter
|
||||||
image = Image.fromarray(image)
|
image = Image.fromarray(image)
|
||||||
image = ImageOps.contain(image, (PREVIEW_MAX_WIDTH, PREVIEW_MAX_HEIGHT), Image.LANCZOS)
|
image = ImageOps.contain(image, (PREVIEW_MAX_WIDTH, PREVIEW_MAX_HEIGHT), Image.LANCZOS)
|
||||||
image = ctk.CTkImage(image, size=image.size)
|
image = ctk.CTkImage(image, size=image.size)
|
||||||
|
|
|
@ -9,6 +9,7 @@ import urllib
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import List, Any
|
from typing import List, Any
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
import cv2
|
||||||
|
|
||||||
import modules.globals
|
import modules.globals
|
||||||
|
|
||||||
|
@ -44,7 +45,19 @@ def detect_fps(target_path: str) -> float:
|
||||||
|
|
||||||
def extract_frames(target_path: str) -> None:
|
def extract_frames(target_path: str) -> None:
|
||||||
temp_directory_path = get_temp_directory_path(target_path)
|
temp_directory_path = get_temp_directory_path(target_path)
|
||||||
run_ffmpeg(['-i', target_path, '-pix_fmt', 'rgb24', os.path.join(temp_directory_path, '%04d.png')])
|
cap = cv2.VideoCapture(target_path)
|
||||||
|
|
||||||
|
frame_count = 0
|
||||||
|
while True:
|
||||||
|
ret, frame = cap.read()
|
||||||
|
if not ret:
|
||||||
|
break
|
||||||
|
|
||||||
|
# Save the frame
|
||||||
|
cv2.imwrite(os.path.join(temp_directory_path, f'{frame_count:04d}.png'), frame)
|
||||||
|
frame_count += 1
|
||||||
|
|
||||||
|
cap.release()
|
||||||
|
|
||||||
|
|
||||||
def create_video(target_path: str, fps: float = 30.0) -> None:
|
def create_video(target_path: str, fps: float = 30.0) -> None:
|
||||||
|
|
|
@ -1,23 +1,26 @@
|
||||||
--extra-index-url https://download.pytorch.org/whl/cu118
|
# Deep Live Cam requirements
|
||||||
|
|
||||||
numpy==1.23.5
|
# Core dependencies
|
||||||
|
numpy==1.26.4
|
||||||
|
onnxruntime-silicon==1.16.3
|
||||||
opencv-python==4.8.1.78
|
opencv-python==4.8.1.78
|
||||||
onnx==1.16.0
|
|
||||||
insightface==0.7.3
|
|
||||||
psutil==5.9.8
|
|
||||||
tk==0.1.0
|
|
||||||
customtkinter==5.2.2
|
|
||||||
pillow==9.5.0
|
pillow==9.5.0
|
||||||
torch==2.0.1+cu118; sys_platform != 'darwin'
|
insightface==0.7.3
|
||||||
torch==2.0.1; sys_platform == 'darwin'
|
torch==2.1.0 # Add the specific version you're using
|
||||||
torchvision==0.15.2+cu118; sys_platform != 'darwin'
|
tensorflow==2.16.1 # Add the specific version you're using
|
||||||
torchvision==0.15.2; sys_platform == 'darwin'
|
|
||||||
onnxruntime==1.18.0; sys_platform == 'darwin' and platform_machine != 'arm64'
|
# Image processing
|
||||||
onnxruntime-silicon==1.16.3; sys_platform == 'darwin' and platform_machine == 'arm64'
|
scikit-image==0.24.0
|
||||||
onnxruntime-gpu==1.18.0; sys_platform != 'darwin'
|
matplotlib==3.9.1.post1
|
||||||
tensorflow==2.13.0rc1; sys_platform == 'darwin'
|
|
||||||
tensorflow==2.12.1; sys_platform != 'darwin'
|
# Machine learning
|
||||||
opennsfw2==0.10.2
|
scikit-learn==1.5.1
|
||||||
protobuf==4.23.2
|
|
||||||
|
# Utilities
|
||||||
tqdm==4.66.4
|
tqdm==4.66.4
|
||||||
gfpgan==1.3.8
|
requests==2.32.3
|
||||||
|
prettytable==3.11.0
|
||||||
|
|
||||||
|
# Optional dependencies (comment out if not needed)
|
||||||
|
# albumentations==1.4.13
|
||||||
|
# coloredlogs==15.0.1
|
||||||
|
|
Loading…
Reference in New Issue