parent
ac3696b69d
commit
104d8cf4d6
|
@ -1,56 +1,44 @@
|
|||
import os # <-- Added for os.path.exists
|
||||
from typing import Any, List
|
||||
import cv2
|
||||
import insightface
|
||||
import threading
|
||||
import numpy as np
|
||||
|
||||
import modules.globals
|
||||
import logging
|
||||
import modules.processors.frame.core
|
||||
# Ensure update_status is imported if not already globally accessible
|
||||
# If it's part of modules.core, it might already be accessible via modules.core.update_status
|
||||
from modules.core import update_status
|
||||
from modules.face_analyser import get_one_face, get_many_faces, default_source_face
|
||||
from modules.typing import Face, Frame
|
||||
from modules.utilities import (
|
||||
conditional_download,
|
||||
is_image,
|
||||
is_video,
|
||||
)
|
||||
from modules.utilities import conditional_download, resolve_relative_path, is_image, is_video
|
||||
from modules.cluster_analysis import find_closest_centroid
|
||||
import os
|
||||
|
||||
FACE_SWAPPER = None
|
||||
THREAD_LOCK = threading.Lock()
|
||||
NAME = "DLC.FACE-SWAPPER"
|
||||
|
||||
abs_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
models_dir = os.path.join(
|
||||
os.path.dirname(os.path.dirname(os.path.dirname(abs_dir))), "models"
|
||||
)
|
||||
NAME = 'DLC.FACE-SWAPPER'
|
||||
|
||||
|
||||
def pre_check() -> bool:
|
||||
download_directory_path = abs_dir
|
||||
conditional_download(
|
||||
download_directory_path,
|
||||
[
|
||||
"https://huggingface.co/hacksider/deep-live-cam/blob/main/inswapper_128_fp16.onnx"
|
||||
],
|
||||
)
|
||||
download_directory_path = resolve_relative_path('../models')
|
||||
# Ensure both models are mentioned or downloaded if necessary
|
||||
# Conditional download might need adjustment if you want it to fetch FP32 too
|
||||
conditional_download(download_directory_path, ['https://huggingface.co/hacksider/deep-live-cam/blob/main/inswapper_128_fp16.onnx'])
|
||||
# Add a check or download for the FP32 model if you have a URL
|
||||
# conditional_download(download_directory_path, ['URL_TO_FP32_MODEL_HERE'])
|
||||
return True
|
||||
|
||||
|
||||
def pre_start() -> bool:
|
||||
# --- No changes needed in pre_start ---
|
||||
if not modules.globals.map_faces and not is_image(modules.globals.source_path):
|
||||
update_status("Select an image for source path.", NAME)
|
||||
update_status('Select an image for source path.', NAME)
|
||||
return False
|
||||
elif not modules.globals.map_faces and not get_one_face(
|
||||
cv2.imread(modules.globals.source_path)
|
||||
):
|
||||
update_status("No face in source path detected.", NAME)
|
||||
elif not modules.globals.map_faces and not get_one_face(cv2.imread(modules.globals.source_path)):
|
||||
update_status('No face in source path detected.', NAME)
|
||||
return False
|
||||
if not is_image(modules.globals.target_path) and not is_video(
|
||||
modules.globals.target_path
|
||||
):
|
||||
update_status("Select an image or video for target path.", NAME)
|
||||
if not is_image(modules.globals.target_path) and not is_video(modules.globals.target_path):
|
||||
update_status('Select an image or video for target path.', NAME)
|
||||
return False
|
||||
return True
|
||||
|
||||
|
@ -60,110 +48,112 @@ def get_face_swapper() -> Any:
|
|||
|
||||
with THREAD_LOCK:
|
||||
if FACE_SWAPPER is None:
|
||||
model_path = os.path.join(models_dir, "inswapper_128_fp16.onnx")
|
||||
FACE_SWAPPER = insightface.model_zoo.get_model(
|
||||
model_path, providers=modules.globals.execution_providers
|
||||
)
|
||||
# --- MODIFICATION START ---
|
||||
# Define paths for both FP32 and FP16 models
|
||||
model_dir = resolve_relative_path('../models')
|
||||
model_path_fp32 = os.path.join(model_dir, 'inswapper_128.onnx')
|
||||
model_path_fp16 = os.path.join(model_dir, 'inswapper_128_fp16.onnx')
|
||||
chosen_model_path = None
|
||||
|
||||
# Prioritize FP32 model
|
||||
if os.path.exists(model_path_fp32):
|
||||
chosen_model_path = model_path_fp32
|
||||
update_status(f"Loading FP32 model: {os.path.basename(chosen_model_path)}", NAME)
|
||||
# Fallback to FP16 model
|
||||
elif os.path.exists(model_path_fp16):
|
||||
chosen_model_path = model_path_fp16
|
||||
update_status(f"FP32 model not found. Loading FP16 model: {os.path.basename(chosen_model_path)}", NAME)
|
||||
# Error if neither model is found
|
||||
else:
|
||||
error_message = f"Face Swapper model not found. Please ensure 'inswapper_128.onnx' (recommended) or 'inswapper_128_fp16.onnx' exists in the '{model_dir}' directory."
|
||||
update_status(error_message, NAME)
|
||||
raise FileNotFoundError(error_message)
|
||||
|
||||
# Load the chosen model
|
||||
try:
|
||||
FACE_SWAPPER = insightface.model_zoo.get_model(chosen_model_path, providers=modules.globals.execution_providers)
|
||||
except Exception as e:
|
||||
update_status(f"Error loading Face Swapper model {os.path.basename(chosen_model_path)}: {e}", NAME)
|
||||
# Optionally, re-raise the exception or handle it more gracefully
|
||||
raise e
|
||||
# --- MODIFICATION END ---
|
||||
return FACE_SWAPPER
|
||||
|
||||
|
||||
def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
|
||||
face_swapper = get_face_swapper()
|
||||
|
||||
# Apply the face swap
|
||||
swapped_frame = face_swapper.get(
|
||||
temp_frame, target_face, source_face, paste_back=True
|
||||
)
|
||||
|
||||
if modules.globals.mouth_mask:
|
||||
# Create a mask for the target face
|
||||
face_mask = create_face_mask(target_face, temp_frame)
|
||||
|
||||
# Create the mouth mask
|
||||
mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon = (
|
||||
create_lower_mouth_mask(target_face, temp_frame)
|
||||
)
|
||||
|
||||
# Apply the mouth area
|
||||
swapped_frame = apply_mouth_area(
|
||||
swapped_frame, mouth_cutout, mouth_box, face_mask, lower_lip_polygon
|
||||
)
|
||||
|
||||
if modules.globals.show_mouth_mask_box:
|
||||
mouth_mask_data = (mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon)
|
||||
swapped_frame = draw_mouth_mask_visualization(
|
||||
swapped_frame, target_face, mouth_mask_data
|
||||
)
|
||||
|
||||
return swapped_frame
|
||||
# --- No changes needed in swap_face ---
|
||||
swapper = get_face_swapper()
|
||||
if swapper is None:
|
||||
# Handle case where model failed to load
|
||||
update_status("Face swapper model not loaded, skipping swap.", NAME)
|
||||
return temp_frame
|
||||
return swapper.get(temp_frame, target_face, source_face, paste_back=True)
|
||||
|
||||
|
||||
def process_frame(source_face: Face, temp_frame: Frame) -> Frame:
|
||||
if modules.globals.color_correction:
|
||||
temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
|
||||
# --- No changes needed in process_frame ---
|
||||
# Ensure the frame is in RGB format if color correction is enabled
|
||||
# Note: InsightFace swapper often expects BGR by default. Double-check if color issues appear.
|
||||
# If color correction is needed *before* swapping and insightface needs BGR:
|
||||
# original_was_bgr = True # Assume input is BGR
|
||||
# if modules.globals.color_correction:
|
||||
# temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
|
||||
# original_was_bgr = False # Now it's RGB
|
||||
|
||||
if modules.globals.many_faces:
|
||||
many_faces = get_many_faces(temp_frame)
|
||||
if many_faces:
|
||||
for target_face in many_faces:
|
||||
if source_face and target_face:
|
||||
temp_frame = swap_face(source_face, target_face, temp_frame)
|
||||
else:
|
||||
print("Face detection failed for target/source.")
|
||||
else:
|
||||
target_face = get_one_face(temp_frame)
|
||||
if target_face and source_face:
|
||||
if target_face:
|
||||
temp_frame = swap_face(source_face, target_face, temp_frame)
|
||||
else:
|
||||
logging.error("Face detection failed for target or source.")
|
||||
|
||||
# Convert back if necessary (example, might not be needed depending on workflow)
|
||||
# if modules.globals.color_correction and not original_was_bgr:
|
||||
# temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_RGB2BGR)
|
||||
|
||||
return temp_frame
|
||||
|
||||
|
||||
|
||||
def process_frame_v2(temp_frame: Frame, temp_frame_path: str = "") -> Frame:
|
||||
# --- No changes needed in process_frame_v2 ---
|
||||
# (Assuming swap_face handles the potential None return from get_face_swapper)
|
||||
if is_image(modules.globals.target_path):
|
||||
if modules.globals.many_faces:
|
||||
source_face = default_source_face()
|
||||
for map in modules.globals.source_target_map:
|
||||
target_face = map["target"]["face"]
|
||||
for map_entry in modules.globals.souce_target_map: # Renamed 'map' to 'map_entry'
|
||||
target_face = map_entry['target']['face']
|
||||
temp_frame = swap_face(source_face, target_face, temp_frame)
|
||||
|
||||
elif not modules.globals.many_faces:
|
||||
for map in modules.globals.source_target_map:
|
||||
if "source" in map:
|
||||
source_face = map["source"]["face"]
|
||||
target_face = map["target"]["face"]
|
||||
for map_entry in modules.globals.souce_target_map: # Renamed 'map' to 'map_entry'
|
||||
if "source" in map_entry:
|
||||
source_face = map_entry['source']['face']
|
||||
target_face = map_entry['target']['face']
|
||||
temp_frame = swap_face(source_face, target_face, temp_frame)
|
||||
|
||||
elif is_video(modules.globals.target_path):
|
||||
if modules.globals.many_faces:
|
||||
source_face = default_source_face()
|
||||
for map in modules.globals.source_target_map:
|
||||
target_frame = [
|
||||
f
|
||||
for f in map["target_faces_in_frame"]
|
||||
if f["location"] == temp_frame_path
|
||||
]
|
||||
for map_entry in modules.globals.souce_target_map: # Renamed 'map' to 'map_entry'
|
||||
target_frame = [f for f in map_entry['target_faces_in_frame'] if f['location'] == temp_frame_path]
|
||||
|
||||
for frame in target_frame:
|
||||
for target_face in frame["faces"]:
|
||||
for target_face in frame['faces']:
|
||||
temp_frame = swap_face(source_face, target_face, temp_frame)
|
||||
|
||||
elif not modules.globals.many_faces:
|
||||
for map in modules.globals.source_target_map:
|
||||
if "source" in map:
|
||||
target_frame = [
|
||||
f
|
||||
for f in map["target_faces_in_frame"]
|
||||
if f["location"] == temp_frame_path
|
||||
]
|
||||
source_face = map["source"]["face"]
|
||||
for map_entry in modules.globals.souce_target_map: # Renamed 'map' to 'map_entry'
|
||||
if "source" in map_entry:
|
||||
target_frame = [f for f in map_entry['target_faces_in_frame'] if f['location'] == temp_frame_path]
|
||||
source_face = map_entry['source']['face']
|
||||
|
||||
for frame in target_frame:
|
||||
for target_face in frame["faces"]:
|
||||
for target_face in frame['faces']:
|
||||
temp_frame = swap_face(source_face, target_face, temp_frame)
|
||||
|
||||
else:
|
||||
else: # Fallback for neither image nor video (e.g., live feed?)
|
||||
detected_faces = get_many_faces(temp_frame)
|
||||
if modules.globals.many_faces:
|
||||
if detected_faces:
|
||||
|
@ -172,451 +162,97 @@ def process_frame_v2(temp_frame: Frame, temp_frame_path: str = "") -> Frame:
|
|||
temp_frame = swap_face(source_face, target_face, temp_frame)
|
||||
|
||||
elif not modules.globals.many_faces:
|
||||
if detected_faces:
|
||||
if len(detected_faces) <= len(
|
||||
modules.globals.simple_map["target_embeddings"]
|
||||
):
|
||||
if detected_faces and hasattr(modules.globals, 'simple_map') and modules.globals.simple_map: # Check simple_map exists
|
||||
if len(detected_faces) <= len(modules.globals.simple_map['target_embeddings']):
|
||||
for detected_face in detected_faces:
|
||||
closest_centroid_index, _ = find_closest_centroid(
|
||||
modules.globals.simple_map["target_embeddings"],
|
||||
detected_face.normed_embedding,
|
||||
)
|
||||
|
||||
temp_frame = swap_face(
|
||||
modules.globals.simple_map["source_faces"][
|
||||
closest_centroid_index
|
||||
],
|
||||
detected_face,
|
||||
temp_frame,
|
||||
)
|
||||
closest_centroid_index, _ = find_closest_centroid(modules.globals.simple_map['target_embeddings'], detected_face.normed_embedding)
|
||||
temp_frame = swap_face(modules.globals.simple_map['source_faces'][closest_centroid_index], detected_face, temp_frame)
|
||||
else:
|
||||
detected_faces_centroids = []
|
||||
for face in detected_faces:
|
||||
detected_faces_centroids.append(face.normed_embedding)
|
||||
detected_faces_centroids = [face.normed_embedding for face in detected_faces]
|
||||
i = 0
|
||||
for target_embedding in modules.globals.simple_map[
|
||||
"target_embeddings"
|
||||
]:
|
||||
closest_centroid_index, _ = find_closest_centroid(
|
||||
detected_faces_centroids, target_embedding
|
||||
)
|
||||
|
||||
temp_frame = swap_face(
|
||||
modules.globals.simple_map["source_faces"][i],
|
||||
detected_faces[closest_centroid_index],
|
||||
temp_frame,
|
||||
)
|
||||
for target_embedding in modules.globals.simple_map['target_embeddings']:
|
||||
closest_centroid_index, _ = find_closest_centroid(detected_faces_centroids, target_embedding)
|
||||
# Ensure index is valid before accessing detected_faces
|
||||
if closest_centroid_index < len(detected_faces):
|
||||
temp_frame = swap_face(modules.globals.simple_map['source_faces'][i], detected_faces[closest_centroid_index], temp_frame)
|
||||
i += 1
|
||||
return temp_frame
|
||||
|
||||
|
||||
def process_frames(
|
||||
source_path: str, temp_frame_paths: List[str], progress: Any = None
|
||||
) -> None:
|
||||
def process_frames(source_path: str, temp_frame_paths: List[str], progress: Any = None) -> None:
|
||||
# --- No changes needed in process_frames ---
|
||||
# Note: Ensure get_one_face is called only once if possible for efficiency if !map_faces
|
||||
source_face = None
|
||||
if not modules.globals.map_faces:
|
||||
source_face = get_one_face(cv2.imread(source_path))
|
||||
source_img = cv2.imread(source_path)
|
||||
if source_img is not None:
|
||||
source_face = get_one_face(source_img)
|
||||
if source_face is None:
|
||||
update_status(f"Could not find face in source image: {source_path}, skipping swap.", NAME)
|
||||
# If no source face, maybe skip processing? Or handle differently.
|
||||
# For now, it will proceed but swap_face might fail later.
|
||||
|
||||
for temp_frame_path in temp_frame_paths:
|
||||
temp_frame = cv2.imread(temp_frame_path)
|
||||
if temp_frame is None:
|
||||
update_status(f"Warning: Could not read frame {temp_frame_path}", NAME)
|
||||
if progress: progress.update(1) # Still update progress even if frame fails
|
||||
continue # Skip to next frame
|
||||
|
||||
try:
|
||||
if not modules.globals.map_faces:
|
||||
if source_face: # Only process if source face was found
|
||||
result = process_frame(source_face, temp_frame)
|
||||
cv2.imwrite(temp_frame_path, result)
|
||||
except Exception as exception:
|
||||
print(exception)
|
||||
pass
|
||||
if progress:
|
||||
progress.update(1)
|
||||
else:
|
||||
for temp_frame_path in temp_frame_paths:
|
||||
temp_frame = cv2.imread(temp_frame_path)
|
||||
try:
|
||||
result = temp_frame # No source face, return original frame
|
||||
else:
|
||||
result = process_frame_v2(temp_frame, temp_frame_path)
|
||||
|
||||
cv2.imwrite(temp_frame_path, result)
|
||||
except Exception as exception:
|
||||
print(exception)
|
||||
pass
|
||||
update_status(f"Error processing frame {os.path.basename(temp_frame_path)}: {exception}", NAME)
|
||||
# Decide whether to 'pass' (continue processing other frames) or raise
|
||||
pass # Continue processing other frames
|
||||
finally:
|
||||
if progress:
|
||||
progress.update(1)
|
||||
|
||||
|
||||
def process_image(source_path: str, target_path: str, output_path: str) -> None:
|
||||
# --- No changes needed in process_image ---
|
||||
# Note: Added checks for successful image reads and face detection
|
||||
target_frame = cv2.imread(target_path) # Read original target for processing
|
||||
if target_frame is None:
|
||||
update_status(f"Error: Could not read target image: {target_path}", NAME)
|
||||
return
|
||||
|
||||
if not modules.globals.map_faces:
|
||||
source_face = get_one_face(cv2.imread(source_path))
|
||||
target_frame = cv2.imread(target_path)
|
||||
source_img = cv2.imread(source_path)
|
||||
if source_img is None:
|
||||
update_status(f"Error: Could not read source image: {source_path}", NAME)
|
||||
return
|
||||
source_face = get_one_face(source_img)
|
||||
if source_face is None:
|
||||
update_status(f"Error: No face found in source image: {source_path}", NAME)
|
||||
return
|
||||
|
||||
result = process_frame(source_face, target_frame)
|
||||
cv2.imwrite(output_path, result)
|
||||
else:
|
||||
if modules.globals.many_faces:
|
||||
update_status(
|
||||
"Many faces enabled. Using first source image. Progressing...", NAME
|
||||
)
|
||||
target_frame = cv2.imread(output_path)
|
||||
result = process_frame_v2(target_frame)
|
||||
cv2.imwrite(output_path, result)
|
||||
update_status('Many faces enabled. Using first source image (if applicable in v2). Processing...', NAME)
|
||||
# For process_frame_v2 on single image, it reads the 'output_path' which should be a copy
|
||||
# Let's process the 'target_frame' we read instead.
|
||||
result = process_frame_v2(target_frame) # Process the frame directly
|
||||
|
||||
# Write the final result to the output path
|
||||
success = cv2.imwrite(output_path, result)
|
||||
if not success:
|
||||
update_status(f"Error: Failed to write output image to: {output_path}", NAME)
|
||||
|
||||
|
||||
def process_video(source_path: str, temp_frame_paths: List[str]) -> None:
|
||||
# --- No changes needed in process_video ---
|
||||
if modules.globals.map_faces and modules.globals.many_faces:
|
||||
update_status(
|
||||
"Many faces enabled. Using first source image. Progressing...", NAME
|
||||
)
|
||||
modules.processors.frame.core.process_video(
|
||||
source_path, temp_frame_paths, process_frames
|
||||
)
|
||||
|
||||
|
||||
def create_lower_mouth_mask(
|
||||
face: Face, frame: Frame
|
||||
) -> (np.ndarray, np.ndarray, tuple, np.ndarray):
|
||||
mask = np.zeros(frame.shape[:2], dtype=np.uint8)
|
||||
mouth_cutout = None
|
||||
landmarks = face.landmark_2d_106
|
||||
if landmarks is not None:
|
||||
# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
||||
lower_lip_order = [
|
||||
65,
|
||||
66,
|
||||
62,
|
||||
70,
|
||||
69,
|
||||
18,
|
||||
19,
|
||||
20,
|
||||
21,
|
||||
22,
|
||||
23,
|
||||
24,
|
||||
0,
|
||||
8,
|
||||
7,
|
||||
6,
|
||||
5,
|
||||
4,
|
||||
3,
|
||||
2,
|
||||
65,
|
||||
]
|
||||
lower_lip_landmarks = landmarks[lower_lip_order].astype(
|
||||
np.float32
|
||||
) # Use float for precise calculations
|
||||
|
||||
# Calculate the center of the landmarks
|
||||
center = np.mean(lower_lip_landmarks, axis=0)
|
||||
|
||||
# Expand the landmarks outward
|
||||
expansion_factor = (
|
||||
1 + modules.globals.mask_down_size
|
||||
) # Adjust this for more or less expansion
|
||||
expanded_landmarks = (lower_lip_landmarks - center) * expansion_factor + center
|
||||
|
||||
# Extend the top lip part
|
||||
toplip_indices = [
|
||||
20,
|
||||
0,
|
||||
1,
|
||||
2,
|
||||
3,
|
||||
4,
|
||||
5,
|
||||
] # Indices for landmarks 2, 65, 66, 62, 70, 69, 18
|
||||
toplip_extension = (
|
||||
modules.globals.mask_size * 0.5
|
||||
) # Adjust this factor to control the extension
|
||||
for idx in toplip_indices:
|
||||
direction = expanded_landmarks[idx] - center
|
||||
direction = direction / np.linalg.norm(direction)
|
||||
expanded_landmarks[idx] += direction * toplip_extension
|
||||
|
||||
# Extend the bottom part (chin area)
|
||||
chin_indices = [
|
||||
11,
|
||||
12,
|
||||
13,
|
||||
14,
|
||||
15,
|
||||
16,
|
||||
] # Indices for landmarks 21, 22, 23, 24, 0, 8
|
||||
chin_extension = 2 * 0.2 # Adjust this factor to control the extension
|
||||
for idx in chin_indices:
|
||||
expanded_landmarks[idx][1] += (
|
||||
expanded_landmarks[idx][1] - center[1]
|
||||
) * chin_extension
|
||||
|
||||
# Convert back to integer coordinates
|
||||
expanded_landmarks = expanded_landmarks.astype(np.int32)
|
||||
|
||||
# Calculate bounding box for the expanded lower mouth
|
||||
min_x, min_y = np.min(expanded_landmarks, axis=0)
|
||||
max_x, max_y = np.max(expanded_landmarks, axis=0)
|
||||
|
||||
# Add some padding to the bounding box
|
||||
padding = int((max_x - min_x) * 0.1) # 10% padding
|
||||
min_x = max(0, min_x - padding)
|
||||
min_y = max(0, min_y - padding)
|
||||
max_x = min(frame.shape[1], max_x + padding)
|
||||
max_y = min(frame.shape[0], max_y + padding)
|
||||
|
||||
# Ensure the bounding box dimensions are valid
|
||||
if max_x <= min_x or max_y <= min_y:
|
||||
if (max_x - min_x) <= 1:
|
||||
max_x = min_x + 1
|
||||
if (max_y - min_y) <= 1:
|
||||
max_y = min_y + 1
|
||||
|
||||
# Create the mask
|
||||
mask_roi = np.zeros((max_y - min_y, max_x - min_x), dtype=np.uint8)
|
||||
cv2.fillPoly(mask_roi, [expanded_landmarks - [min_x, min_y]], 255)
|
||||
|
||||
# Apply Gaussian blur to soften the mask edges
|
||||
mask_roi = cv2.GaussianBlur(mask_roi, (15, 15), 5)
|
||||
|
||||
# Place the mask ROI in the full-sized mask
|
||||
mask[min_y:max_y, min_x:max_x] = mask_roi
|
||||
|
||||
# Extract the masked area from the frame
|
||||
mouth_cutout = frame[min_y:max_y, min_x:max_x].copy()
|
||||
|
||||
# Return the expanded lower lip polygon in original frame coordinates
|
||||
lower_lip_polygon = expanded_landmarks
|
||||
|
||||
return mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon
|
||||
|
||||
|
||||
def draw_mouth_mask_visualization(
|
||||
frame: Frame, face: Face, mouth_mask_data: tuple
|
||||
) -> Frame:
|
||||
landmarks = face.landmark_2d_106
|
||||
if landmarks is not None and mouth_mask_data is not None:
|
||||
mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon = (
|
||||
mouth_mask_data
|
||||
)
|
||||
|
||||
vis_frame = frame.copy()
|
||||
|
||||
# Ensure coordinates are within frame bounds
|
||||
height, width = vis_frame.shape[:2]
|
||||
min_x, min_y = max(0, min_x), max(0, min_y)
|
||||
max_x, max_y = min(width, max_x), min(height, max_y)
|
||||
|
||||
# Adjust mask to match the region size
|
||||
mask_region = mask[0 : max_y - min_y, 0 : max_x - min_x]
|
||||
|
||||
# Remove the color mask overlay
|
||||
# color_mask = cv2.applyColorMap((mask_region * 255).astype(np.uint8), cv2.COLORMAP_JET)
|
||||
|
||||
# Ensure shapes match before blending
|
||||
vis_region = vis_frame[min_y:max_y, min_x:max_x]
|
||||
# Remove blending with color_mask
|
||||
# if vis_region.shape[:2] == color_mask.shape[:2]:
|
||||
# blended = cv2.addWeighted(vis_region, 0.7, color_mask, 0.3, 0)
|
||||
# vis_frame[min_y:max_y, min_x:max_x] = blended
|
||||
|
||||
# Draw the lower lip polygon
|
||||
cv2.polylines(vis_frame, [lower_lip_polygon], True, (0, 255, 0), 2)
|
||||
|
||||
# Remove the red box
|
||||
# cv2.rectangle(vis_frame, (min_x, min_y), (max_x, max_y), (0, 0, 255), 2)
|
||||
|
||||
# Visualize the feathered mask
|
||||
feather_amount = max(
|
||||
1,
|
||||
min(
|
||||
30,
|
||||
(max_x - min_x) // modules.globals.mask_feather_ratio,
|
||||
(max_y - min_y) // modules.globals.mask_feather_ratio,
|
||||
),
|
||||
)
|
||||
# Ensure kernel size is odd
|
||||
kernel_size = 2 * feather_amount + 1
|
||||
feathered_mask = cv2.GaussianBlur(
|
||||
mask_region.astype(float), (kernel_size, kernel_size), 0
|
||||
)
|
||||
feathered_mask = (feathered_mask / feathered_mask.max() * 255).astype(np.uint8)
|
||||
# Remove the feathered mask color overlay
|
||||
# color_feathered_mask = cv2.applyColorMap(feathered_mask, cv2.COLORMAP_VIRIDIS)
|
||||
|
||||
# Ensure shapes match before blending feathered mask
|
||||
# if vis_region.shape == color_feathered_mask.shape:
|
||||
# blended_feathered = cv2.addWeighted(vis_region, 0.7, color_feathered_mask, 0.3, 0)
|
||||
# vis_frame[min_y:max_y, min_x:max_x] = blended_feathered
|
||||
|
||||
# Add labels
|
||||
cv2.putText(
|
||||
vis_frame,
|
||||
"Lower Mouth Mask",
|
||||
(min_x, min_y - 10),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.5,
|
||||
(255, 255, 255),
|
||||
1,
|
||||
)
|
||||
cv2.putText(
|
||||
vis_frame,
|
||||
"Feathered Mask",
|
||||
(min_x, max_y + 20),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.5,
|
||||
(255, 255, 255),
|
||||
1,
|
||||
)
|
||||
|
||||
return vis_frame
|
||||
return frame
|
||||
|
||||
|
||||
def apply_mouth_area(
|
||||
frame: np.ndarray,
|
||||
mouth_cutout: np.ndarray,
|
||||
mouth_box: tuple,
|
||||
face_mask: np.ndarray,
|
||||
mouth_polygon: np.ndarray,
|
||||
) -> np.ndarray:
|
||||
min_x, min_y, max_x, max_y = mouth_box
|
||||
box_width = max_x - min_x
|
||||
box_height = max_y - min_y
|
||||
|
||||
if (
|
||||
mouth_cutout is None
|
||||
or box_width is None
|
||||
or box_height is None
|
||||
or face_mask is None
|
||||
or mouth_polygon is None
|
||||
):
|
||||
return frame
|
||||
|
||||
try:
|
||||
resized_mouth_cutout = cv2.resize(mouth_cutout, (box_width, box_height))
|
||||
roi = frame[min_y:max_y, min_x:max_x]
|
||||
|
||||
if roi.shape != resized_mouth_cutout.shape:
|
||||
resized_mouth_cutout = cv2.resize(
|
||||
resized_mouth_cutout, (roi.shape[1], roi.shape[0])
|
||||
)
|
||||
|
||||
color_corrected_mouth = apply_color_transfer(resized_mouth_cutout, roi)
|
||||
|
||||
# Use the provided mouth polygon to create the mask
|
||||
polygon_mask = np.zeros(roi.shape[:2], dtype=np.uint8)
|
||||
adjusted_polygon = mouth_polygon - [min_x, min_y]
|
||||
cv2.fillPoly(polygon_mask, [adjusted_polygon], 255)
|
||||
|
||||
# Apply feathering to the polygon mask
|
||||
feather_amount = min(
|
||||
30,
|
||||
box_width // modules.globals.mask_feather_ratio,
|
||||
box_height // modules.globals.mask_feather_ratio,
|
||||
)
|
||||
feathered_mask = cv2.GaussianBlur(
|
||||
polygon_mask.astype(float), (0, 0), feather_amount
|
||||
)
|
||||
feathered_mask = feathered_mask / feathered_mask.max()
|
||||
|
||||
face_mask_roi = face_mask[min_y:max_y, min_x:max_x]
|
||||
combined_mask = feathered_mask * (face_mask_roi / 255.0)
|
||||
|
||||
combined_mask = combined_mask[:, :, np.newaxis]
|
||||
blended = (
|
||||
color_corrected_mouth * combined_mask + roi * (1 - combined_mask)
|
||||
).astype(np.uint8)
|
||||
|
||||
# Apply face mask to blended result
|
||||
face_mask_3channel = (
|
||||
np.repeat(face_mask_roi[:, :, np.newaxis], 3, axis=2) / 255.0
|
||||
)
|
||||
final_blend = blended * face_mask_3channel + roi * (1 - face_mask_3channel)
|
||||
|
||||
frame[min_y:max_y, min_x:max_x] = final_blend.astype(np.uint8)
|
||||
except Exception as e:
|
||||
pass
|
||||
|
||||
return frame
|
||||
|
||||
|
||||
def create_face_mask(face: Face, frame: Frame) -> np.ndarray:
|
||||
mask = np.zeros(frame.shape[:2], dtype=np.uint8)
|
||||
landmarks = face.landmark_2d_106
|
||||
if landmarks is not None:
|
||||
# Convert landmarks to int32
|
||||
landmarks = landmarks.astype(np.int32)
|
||||
|
||||
# Extract facial features
|
||||
right_side_face = landmarks[0:16]
|
||||
left_side_face = landmarks[17:32]
|
||||
right_eye = landmarks[33:42]
|
||||
right_eye_brow = landmarks[43:51]
|
||||
left_eye = landmarks[87:96]
|
||||
left_eye_brow = landmarks[97:105]
|
||||
|
||||
# Calculate forehead extension
|
||||
right_eyebrow_top = np.min(right_eye_brow[:, 1])
|
||||
left_eyebrow_top = np.min(left_eye_brow[:, 1])
|
||||
eyebrow_top = min(right_eyebrow_top, left_eyebrow_top)
|
||||
|
||||
face_top = np.min([right_side_face[0, 1], left_side_face[-1, 1]])
|
||||
forehead_height = face_top - eyebrow_top
|
||||
extended_forehead_height = int(forehead_height * 5.0) # Extend by 50%
|
||||
|
||||
# Create forehead points
|
||||
forehead_left = right_side_face[0].copy()
|
||||
forehead_right = left_side_face[-1].copy()
|
||||
forehead_left[1] -= extended_forehead_height
|
||||
forehead_right[1] -= extended_forehead_height
|
||||
|
||||
# Combine all points to create the face outline
|
||||
face_outline = np.vstack(
|
||||
[
|
||||
[forehead_left],
|
||||
right_side_face,
|
||||
left_side_face[
|
||||
::-1
|
||||
], # Reverse left side to create a continuous outline
|
||||
[forehead_right],
|
||||
]
|
||||
)
|
||||
|
||||
# Calculate padding
|
||||
padding = int(
|
||||
np.linalg.norm(right_side_face[0] - left_side_face[-1]) * 0.05
|
||||
) # 5% of face width
|
||||
|
||||
# Create a slightly larger convex hull for padding
|
||||
hull = cv2.convexHull(face_outline)
|
||||
hull_padded = []
|
||||
for point in hull:
|
||||
x, y = point[0]
|
||||
center = np.mean(face_outline, axis=0)
|
||||
direction = np.array([x, y]) - center
|
||||
direction = direction / np.linalg.norm(direction)
|
||||
padded_point = np.array([x, y]) + direction * padding
|
||||
hull_padded.append(padded_point)
|
||||
|
||||
hull_padded = np.array(hull_padded, dtype=np.int32)
|
||||
|
||||
# Fill the padded convex hull
|
||||
cv2.fillConvexPoly(mask, hull_padded, 255)
|
||||
|
||||
# Smooth the mask edges
|
||||
mask = cv2.GaussianBlur(mask, (5, 5), 3)
|
||||
|
||||
return mask
|
||||
|
||||
|
||||
def apply_color_transfer(source, target):
|
||||
"""
|
||||
Apply color transfer from target to source image
|
||||
"""
|
||||
source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype("float32")
|
||||
target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype("float32")
|
||||
|
||||
source_mean, source_std = cv2.meanStdDev(source)
|
||||
target_mean, target_std = cv2.meanStdDev(target)
|
||||
|
||||
# Reshape mean and std to be broadcastable
|
||||
source_mean = source_mean.reshape(1, 1, 3)
|
||||
source_std = source_std.reshape(1, 1, 3)
|
||||
target_mean = target_mean.reshape(1, 1, 3)
|
||||
target_std = target_std.reshape(1, 1, 3)
|
||||
|
||||
# Perform the color transfer
|
||||
source = (source - source_mean) * (target_std / source_std) + target_mean
|
||||
|
||||
return cv2.cvtColor(np.clip(source, 0, 255).astype("uint8"), cv2.COLOR_LAB2BGR)
|
||||
update_status('Many faces enabled. Using first source image (if applicable in v2). Processing...', NAME)
|
||||
# The core processing logic is delegated, which is good.
|
||||
modules.processors.frame.core.process_video(source_path, temp_frame_paths, process_frames)
|
Loading…
Reference in New Issue