270 lines
9.7 KiB
Python
270 lines
9.7 KiB
Python
from typing import Any, List, Tuple
|
|
import cv2
|
|
import numpy as np
|
|
import insightface
|
|
import threading
|
|
|
|
import modules.globals
|
|
import modules.processors.frame.core
|
|
from modules.core import update_status
|
|
from modules.face_analyser import get_one_face, get_many_faces, default_source_face
|
|
from modules.typing import Face, Frame
|
|
from modules.utilities import (
|
|
conditional_download,
|
|
resolve_relative_path,
|
|
is_image,
|
|
is_video,
|
|
)
|
|
from modules.cluster_analysis import find_closest_centroid
|
|
|
|
FACE_SWAPPER = None
|
|
THREAD_LOCK = threading.Lock()
|
|
NAME = "DLC.FACE-SWAPPER"
|
|
|
|
# Add mouth landmarks indices for masking
|
|
MOUTH_LANDMARKS = list(
|
|
range(46, 68)
|
|
) # Common indices for mouth landmarks in facial detection
|
|
|
|
|
|
def pre_check() -> bool:
|
|
download_directory_path = resolve_relative_path("../models")
|
|
conditional_download(
|
|
download_directory_path,
|
|
[
|
|
"https://huggingface.co/hacksider/deep-live-cam/blob/main/inswapper_128_fp16.onnx"
|
|
],
|
|
)
|
|
return True
|
|
|
|
|
|
def pre_start() -> bool:
|
|
if not modules.globals.map_faces and not is_image(modules.globals.source_path):
|
|
update_status("Select an image for source path.", NAME)
|
|
return False
|
|
elif not modules.globals.map_faces and not get_one_face(
|
|
cv2.imread(modules.globals.source_path)
|
|
):
|
|
update_status("No face in source path detected.", NAME)
|
|
return False
|
|
if not is_image(modules.globals.target_path) and not is_video(
|
|
modules.globals.target_path
|
|
):
|
|
update_status("Select an image or video for target path.", NAME)
|
|
return False
|
|
return True
|
|
|
|
|
|
def get_face_swapper() -> Any:
|
|
global FACE_SWAPPER
|
|
|
|
with THREAD_LOCK:
|
|
if FACE_SWAPPER is None:
|
|
model_path = resolve_relative_path("../models/inswapper_128_fp16.onnx")
|
|
FACE_SWAPPER = insightface.model_zoo.get_model(
|
|
model_path, providers=modules.globals.execution_providers
|
|
)
|
|
return FACE_SWAPPER
|
|
|
|
|
|
def create_mouth_mask(face: Face, frame_shape: Tuple[int, int]) -> np.ndarray:
|
|
"""Create a mask for the mouth region"""
|
|
mask = np.zeros(frame_shape[:2], dtype=np.uint8)
|
|
|
|
# Get mouth landmarks from the face
|
|
landmarks = face.kps
|
|
mouth_points = landmarks[MOUTH_LANDMARKS].astype(np.int32)
|
|
|
|
# Create a polygon around the mouth region
|
|
cv2.fillPoly(mask, [mouth_points], 255)
|
|
|
|
# Dilate the mask slightly to ensure smooth blending
|
|
kernel = np.ones((5, 5), np.uint8)
|
|
mask = cv2.dilate(mask, kernel, iterations=2)
|
|
|
|
# Blur the mask edges
|
|
mask = cv2.GaussianBlur(mask, (15, 15), 10)
|
|
|
|
return mask
|
|
|
|
|
|
def blend_with_mask(
|
|
swapped_frame: Frame, original_frame: Frame, mask: np.ndarray
|
|
) -> Frame:
|
|
"""Blend the swapped face with the original frame using the mouth mask"""
|
|
mask_3channel = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) / 255.0
|
|
|
|
# Blend the images based on the mask
|
|
blended = swapped_frame * (1 - mask_3channel) + original_frame * mask_3channel
|
|
return blended.astype(np.uint8)
|
|
|
|
|
|
def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
|
|
# Store the original frame for mouth preservation
|
|
original_frame = temp_frame.copy()
|
|
|
|
# Perform the face swap
|
|
swapped_frame = get_face_swapper().get(
|
|
temp_frame, target_face, source_face, paste_back=True
|
|
)
|
|
|
|
|
|
def process_frame(source_face: Face, temp_frame: Frame) -> Frame:
|
|
# Ensure the frame is in RGB format if color correction is enabled
|
|
if modules.globals.color_correction:
|
|
temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
|
|
|
|
if modules.globals.many_faces:
|
|
many_faces = get_many_faces(temp_frame)
|
|
if many_faces:
|
|
for target_face in many_faces:
|
|
temp_frame = swap_face(source_face, target_face, temp_frame)
|
|
else:
|
|
target_face = get_one_face(temp_frame)
|
|
if target_face:
|
|
temp_frame = swap_face(source_face, target_face, temp_frame)
|
|
return temp_frame
|
|
|
|
|
|
def process_frame_v2(temp_frame: Frame, temp_frame_path: str = "") -> Frame:
|
|
if is_image(modules.globals.target_path):
|
|
if modules.globals.many_faces:
|
|
source_face = default_source_face()
|
|
for map in modules.globals.souce_target_map:
|
|
target_face = map["target"]["face"]
|
|
temp_frame = swap_face(source_face, target_face, temp_frame)
|
|
|
|
elif not modules.globals.many_faces:
|
|
for map in modules.globals.souce_target_map:
|
|
if "source" in map:
|
|
source_face = map["source"]["face"]
|
|
target_face = map["target"]["face"]
|
|
temp_frame = swap_face(source_face, target_face, temp_frame)
|
|
|
|
elif is_video(modules.globals.target_path):
|
|
if modules.globals.many_faces:
|
|
source_face = default_source_face()
|
|
for map in modules.globals.souce_target_map:
|
|
target_frame = [
|
|
f
|
|
for f in map["target_faces_in_frame"]
|
|
if f["location"] == temp_frame_path
|
|
]
|
|
|
|
for frame in target_frame:
|
|
for target_face in frame["faces"]:
|
|
temp_frame = swap_face(source_face, target_face, temp_frame)
|
|
|
|
elif not modules.globals.many_faces:
|
|
for map in modules.globals.souce_target_map:
|
|
if "source" in map:
|
|
target_frame = [
|
|
f
|
|
for f in map["target_faces_in_frame"]
|
|
if f["location"] == temp_frame_path
|
|
]
|
|
source_face = map["source"]["face"]
|
|
|
|
for frame in target_frame:
|
|
for target_face in frame["faces"]:
|
|
temp_frame = swap_face(source_face, target_face, temp_frame)
|
|
else:
|
|
detected_faces = get_many_faces(temp_frame)
|
|
if modules.globals.many_faces:
|
|
if detected_faces:
|
|
source_face = default_source_face()
|
|
for target_face in detected_faces:
|
|
temp_frame = swap_face(source_face, target_face, temp_frame)
|
|
|
|
elif not modules.globals.many_faces:
|
|
if detected_faces:
|
|
if len(detected_faces) <= len(
|
|
modules.globals.simple_map["target_embeddings"]
|
|
):
|
|
for detected_face in detected_faces:
|
|
closest_centroid_index, _ = find_closest_centroid(
|
|
modules.globals.simple_map["target_embeddings"],
|
|
detected_face.normed_embedding,
|
|
)
|
|
|
|
temp_frame = swap_face(
|
|
modules.globals.simple_map["source_faces"][
|
|
closest_centroid_index
|
|
],
|
|
detected_face,
|
|
temp_frame,
|
|
)
|
|
else:
|
|
detected_faces_centroids = []
|
|
for face in detected_faces:
|
|
detected_faces_centroids.append(face.normed_embedding)
|
|
i = 0
|
|
for target_embedding in modules.globals.simple_map[
|
|
"target_embeddings"
|
|
]:
|
|
closest_centroid_index, _ = find_closest_centroid(
|
|
detected_faces_centroids, target_embedding
|
|
)
|
|
|
|
temp_frame = swap_face(
|
|
modules.globals.simple_map["source_faces"][i],
|
|
detected_faces[closest_centroid_index],
|
|
temp_frame,
|
|
)
|
|
i += 1
|
|
return temp_frame
|
|
|
|
|
|
def process_frames(
|
|
source_path: str, temp_frame_paths: List[str], progress: Any = None
|
|
) -> None:
|
|
if not modules.globals.map_faces:
|
|
source_face = get_one_face(cv2.imread(source_path))
|
|
for temp_frame_path in temp_frame_paths:
|
|
temp_frame = cv2.imread(temp_frame_path)
|
|
try:
|
|
result = process_frame(source_face, temp_frame)
|
|
cv2.imwrite(temp_frame_path, result)
|
|
except Exception as exception:
|
|
print(exception)
|
|
pass
|
|
if progress:
|
|
progress.update(1)
|
|
else:
|
|
for temp_frame_path in temp_frame_paths:
|
|
temp_frame = cv2.imread(temp_frame_path)
|
|
try:
|
|
result = process_frame_v2(temp_frame, temp_frame_path)
|
|
cv2.imwrite(temp_frame_path, result)
|
|
except Exception as exception:
|
|
print(exception)
|
|
pass
|
|
if progress:
|
|
progress.update(1)
|
|
|
|
|
|
def process_image(source_path: str, target_path: str, output_path: str) -> None:
|
|
if not modules.globals.map_faces:
|
|
source_face = get_one_face(cv2.imread(source_path))
|
|
target_frame = cv2.imread(target_path)
|
|
result = process_frame(source_face, target_frame)
|
|
cv2.imwrite(output_path, result)
|
|
else:
|
|
if modules.globals.many_faces:
|
|
update_status(
|
|
"Many faces enabled. Using first source image. Progressing...", NAME
|
|
)
|
|
target_frame = cv2.imread(output_path)
|
|
result = process_frame_v2(target_frame)
|
|
cv2.imwrite(output_path, result)
|
|
|
|
|
|
def process_video(source_path: str, temp_frame_paths: List[str]) -> None:
|
|
if modules.globals.map_faces and modules.globals.many_faces:
|
|
update_status(
|
|
"Many faces enabled. Using first source image. Progressing...", NAME
|
|
)
|
|
modules.processors.frame.core.process_video(
|
|
source_path, temp_frame_paths, process_frames
|
|
)
|