633 lines
24 KiB
Python
633 lines
24 KiB
Python
import cv2
|
|
import numpy as np
|
|
from modules.typing import Face, Frame
|
|
import modules.globals
|
|
|
|
def apply_color_transfer(source, target):
|
|
"""
|
|
Apply color transfer from target to source image
|
|
"""
|
|
source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype("float32")
|
|
target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype("float32")
|
|
|
|
source_mean, source_std = cv2.meanStdDev(source)
|
|
target_mean, target_std = cv2.meanStdDev(target)
|
|
|
|
# Reshape mean and std to be broadcastable
|
|
source_mean = source_mean.reshape(1, 1, 3)
|
|
source_std = source_std.reshape(1, 1, 3)
|
|
target_mean = target_mean.reshape(1, 1, 3)
|
|
target_std = target_std.reshape(1, 1, 3)
|
|
|
|
# Perform the color transfer
|
|
source = (source - source_mean) * (target_std / source_std) + target_mean
|
|
|
|
return cv2.cvtColor(np.clip(source, 0, 255).astype("uint8"), cv2.COLOR_LAB2BGR)
|
|
|
|
def create_face_mask(face: Face, frame: Frame) -> np.ndarray:
|
|
mask = np.zeros(frame.shape[:2], dtype=np.uint8)
|
|
landmarks = face.landmark_2d_106
|
|
if landmarks is not None:
|
|
# Convert landmarks to int32
|
|
landmarks = landmarks.astype(np.int32)
|
|
|
|
# Extract facial features
|
|
right_side_face = landmarks[0:16]
|
|
left_side_face = landmarks[17:32]
|
|
right_eye = landmarks[33:42]
|
|
right_eye_brow = landmarks[43:51]
|
|
left_eye = landmarks[87:96]
|
|
left_eye_brow = landmarks[97:105]
|
|
|
|
# Calculate forehead extension
|
|
right_eyebrow_top = np.min(right_eye_brow[:, 1])
|
|
left_eyebrow_top = np.min(left_eye_brow[:, 1])
|
|
eyebrow_top = min(right_eyebrow_top, left_eyebrow_top)
|
|
|
|
face_top = np.min([right_side_face[0, 1], left_side_face[-1, 1]])
|
|
forehead_height = face_top - eyebrow_top
|
|
extended_forehead_height = int(forehead_height * 5.0) # Extend by 50%
|
|
|
|
# Create forehead points
|
|
forehead_left = right_side_face[0].copy()
|
|
forehead_right = left_side_face[-1].copy()
|
|
forehead_left[1] -= extended_forehead_height
|
|
forehead_right[1] -= extended_forehead_height
|
|
|
|
# Combine all points to create the face outline
|
|
face_outline = np.vstack(
|
|
[
|
|
[forehead_left],
|
|
right_side_face,
|
|
left_side_face[::-1], # Reverse left side to create a continuous outline
|
|
[forehead_right],
|
|
]
|
|
)
|
|
|
|
# Calculate padding
|
|
padding = int(
|
|
np.linalg.norm(right_side_face[0] - left_side_face[-1]) * 0.05
|
|
) # 5% of face width
|
|
|
|
# Create a slightly larger convex hull for padding
|
|
hull = cv2.convexHull(face_outline)
|
|
hull_padded = []
|
|
for point in hull:
|
|
x, y = point[0]
|
|
center = np.mean(face_outline, axis=0)
|
|
direction = np.array([x, y]) - center
|
|
direction = direction / np.linalg.norm(direction)
|
|
padded_point = np.array([x, y]) + direction * padding
|
|
hull_padded.append(padded_point)
|
|
|
|
hull_padded = np.array(hull_padded, dtype=np.int32)
|
|
|
|
# Fill the padded convex hull
|
|
cv2.fillConvexPoly(mask, hull_padded, 255)
|
|
|
|
# Smooth the mask edges
|
|
mask = cv2.GaussianBlur(mask, (5, 5), 3)
|
|
|
|
return mask
|
|
|
|
def create_lower_mouth_mask(
|
|
face: Face, frame: Frame
|
|
) -> (np.ndarray, np.ndarray, tuple, np.ndarray):
|
|
mask = np.zeros(frame.shape[:2], dtype=np.uint8)
|
|
mouth_cutout = None
|
|
landmarks = face.landmark_2d_106
|
|
if landmarks is not None:
|
|
# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
|
lower_lip_order = [
|
|
65,
|
|
66,
|
|
62,
|
|
70,
|
|
69,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
0,
|
|
8,
|
|
7,
|
|
6,
|
|
5,
|
|
4,
|
|
3,
|
|
2,
|
|
65,
|
|
]
|
|
lower_lip_landmarks = landmarks[lower_lip_order].astype(
|
|
np.float32
|
|
) # Use float for precise calculations
|
|
|
|
# Calculate the center of the landmarks
|
|
center = np.mean(lower_lip_landmarks, axis=0)
|
|
|
|
# Expand the landmarks outward
|
|
expansion_factor = (
|
|
1 + modules.globals.mask_down_size
|
|
) # Adjust this for more or less expansion
|
|
expanded_landmarks = (lower_lip_landmarks - center) * expansion_factor + center
|
|
|
|
# Extend the top lip part
|
|
toplip_indices = [
|
|
20,
|
|
0,
|
|
1,
|
|
2,
|
|
3,
|
|
4,
|
|
5,
|
|
] # Indices for landmarks 2, 65, 66, 62, 70, 69, 18
|
|
toplip_extension = (
|
|
modules.globals.mask_size * 0.5
|
|
) # Adjust this factor to control the extension
|
|
for idx in toplip_indices:
|
|
direction = expanded_landmarks[idx] - center
|
|
direction = direction / np.linalg.norm(direction)
|
|
expanded_landmarks[idx] += direction * toplip_extension
|
|
|
|
# Extend the bottom part (chin area)
|
|
chin_indices = [
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
] # Indices for landmarks 21, 22, 23, 24, 0, 8
|
|
chin_extension = 2 * 0.2 # Adjust this factor to control the extension
|
|
for idx in chin_indices:
|
|
expanded_landmarks[idx][1] += (
|
|
expanded_landmarks[idx][1] - center[1]
|
|
) * chin_extension
|
|
|
|
# Convert back to integer coordinates
|
|
expanded_landmarks = expanded_landmarks.astype(np.int32)
|
|
|
|
# Calculate bounding box for the expanded lower mouth
|
|
min_x, min_y = np.min(expanded_landmarks, axis=0)
|
|
max_x, max_y = np.max(expanded_landmarks, axis=0)
|
|
|
|
# Add some padding to the bounding box
|
|
padding = int((max_x - min_x) * 0.1) # 10% padding
|
|
min_x = max(0, min_x - padding)
|
|
min_y = max(0, min_y - padding)
|
|
max_x = min(frame.shape[1], max_x + padding)
|
|
max_y = min(frame.shape[0], max_y + padding)
|
|
|
|
# Ensure the bounding box dimensions are valid
|
|
if max_x <= min_x or max_y <= min_y:
|
|
if (max_x - min_x) <= 1:
|
|
max_x = min_x + 1
|
|
if (max_y - min_y) <= 1:
|
|
max_y = min_y + 1
|
|
|
|
# Create the mask
|
|
mask_roi = np.zeros((max_y - min_y, max_x - min_x), dtype=np.uint8)
|
|
cv2.fillPoly(mask_roi, [expanded_landmarks - [min_x, min_y]], 255)
|
|
|
|
# Apply Gaussian blur to soften the mask edges
|
|
mask_roi = cv2.GaussianBlur(mask_roi, (15, 15), 5)
|
|
|
|
# Place the mask ROI in the full-sized mask
|
|
mask[min_y:max_y, min_x:max_x] = mask_roi
|
|
|
|
# Extract the masked area from the frame
|
|
mouth_cutout = frame[min_y:max_y, min_x:max_x].copy()
|
|
|
|
# Return the expanded lower lip polygon in original frame coordinates
|
|
lower_lip_polygon = expanded_landmarks
|
|
|
|
return mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon
|
|
|
|
def create_eyes_mask(face: Face, frame: Frame) -> (np.ndarray, np.ndarray, tuple, np.ndarray):
|
|
mask = np.zeros(frame.shape[:2], dtype=np.uint8)
|
|
eyes_cutout = None
|
|
landmarks = face.landmark_2d_106
|
|
if landmarks is not None:
|
|
# Left eye landmarks (87-96) and right eye landmarks (33-42)
|
|
left_eye = landmarks[87:96]
|
|
right_eye = landmarks[33:42]
|
|
|
|
# Calculate centers and dimensions for each eye
|
|
left_eye_center = np.mean(left_eye, axis=0).astype(np.int32)
|
|
right_eye_center = np.mean(right_eye, axis=0).astype(np.int32)
|
|
|
|
# Calculate eye dimensions
|
|
def get_eye_dimensions(eye_points):
|
|
x_coords = eye_points[:, 0]
|
|
y_coords = eye_points[:, 1]
|
|
width = int((np.max(x_coords) - np.min(x_coords)) * (1 + modules.globals.mask_down_size))
|
|
height = int((np.max(y_coords) - np.min(y_coords)) * (1 + modules.globals.mask_down_size))
|
|
return width, height
|
|
|
|
left_width, left_height = get_eye_dimensions(left_eye)
|
|
right_width, right_height = get_eye_dimensions(right_eye)
|
|
|
|
# Add extra padding
|
|
padding = int(max(left_width, right_width) * 0.2)
|
|
|
|
# Calculate bounding box for both eyes
|
|
min_x = min(left_eye_center[0] - left_width//2, right_eye_center[0] - right_width//2) - padding
|
|
max_x = max(left_eye_center[0] + left_width//2, right_eye_center[0] + right_width//2) + padding
|
|
min_y = min(left_eye_center[1] - left_height//2, right_eye_center[1] - right_height//2) - padding
|
|
max_y = max(left_eye_center[1] + left_height//2, right_eye_center[1] + right_height//2) + padding
|
|
|
|
# Ensure coordinates are within frame bounds
|
|
min_x = max(0, min_x)
|
|
min_y = max(0, min_y)
|
|
max_x = min(frame.shape[1], max_x)
|
|
max_y = min(frame.shape[0], max_y)
|
|
|
|
# Create mask for the eyes region
|
|
mask_roi = np.zeros((max_y - min_y, max_x - min_x), dtype=np.uint8)
|
|
|
|
# Draw ellipses for both eyes
|
|
left_center = (left_eye_center[0] - min_x, left_eye_center[1] - min_y)
|
|
right_center = (right_eye_center[0] - min_x, right_eye_center[1] - min_y)
|
|
|
|
# Calculate axes lengths (half of width and height)
|
|
left_axes = (left_width//2, left_height//2)
|
|
right_axes = (right_width//2, right_height//2)
|
|
|
|
# Draw filled ellipses
|
|
cv2.ellipse(mask_roi, left_center, left_axes, 0, 0, 360, 255, -1)
|
|
cv2.ellipse(mask_roi, right_center, right_axes, 0, 0, 360, 255, -1)
|
|
|
|
# Apply Gaussian blur to soften mask edges
|
|
mask_roi = cv2.GaussianBlur(mask_roi, (15, 15), 5)
|
|
|
|
# Place the mask ROI in the full-sized mask
|
|
mask[min_y:max_y, min_x:max_x] = mask_roi
|
|
|
|
# Extract the masked area from the frame
|
|
eyes_cutout = frame[min_y:max_y, min_x:max_x].copy()
|
|
|
|
# Create polygon points for visualization
|
|
def create_ellipse_points(center, axes):
|
|
t = np.linspace(0, 2*np.pi, 32)
|
|
x = center[0] + axes[0] * np.cos(t)
|
|
y = center[1] + axes[1] * np.sin(t)
|
|
return np.column_stack((x, y)).astype(np.int32)
|
|
|
|
# Generate points for both ellipses
|
|
left_points = create_ellipse_points((left_eye_center[0], left_eye_center[1]), (left_width//2, left_height//2))
|
|
right_points = create_ellipse_points((right_eye_center[0], right_eye_center[1]), (right_width//2, right_height//2))
|
|
|
|
# Combine points for both eyes
|
|
eyes_polygon = np.vstack([left_points, right_points])
|
|
|
|
return mask, eyes_cutout, (min_x, min_y, max_x, max_y), eyes_polygon
|
|
|
|
def create_curved_eyebrow(points):
|
|
if len(points) >= 5:
|
|
# Sort points by x-coordinate
|
|
sorted_idx = np.argsort(points[:, 0])
|
|
sorted_points = points[sorted_idx]
|
|
|
|
# Calculate dimensions
|
|
x_min, y_min = np.min(sorted_points, axis=0)
|
|
x_max, y_max = np.max(sorted_points, axis=0)
|
|
width = x_max - x_min
|
|
height = y_max - y_min
|
|
|
|
# Create more points for smoother curve
|
|
num_points = 50
|
|
x = np.linspace(x_min, x_max, num_points)
|
|
|
|
# Fit quadratic curve through points for more natural arch
|
|
coeffs = np.polyfit(sorted_points[:, 0], sorted_points[:, 1], 2)
|
|
y = np.polyval(coeffs, x)
|
|
|
|
# Increased offsets to create more separation
|
|
top_offset = height * 0.5 # Increased from 0.3 to shift up more
|
|
bottom_offset = height * 0.2 # Increased from 0.1 to shift down more
|
|
|
|
# Create smooth curves
|
|
top_curve = y - top_offset
|
|
bottom_curve = y + bottom_offset
|
|
|
|
# Create curved endpoints with more pronounced taper
|
|
end_points = 5
|
|
start_x = np.linspace(x[0] - width * 0.15, x[0], end_points) # Increased taper
|
|
end_x = np.linspace(x[-1], x[-1] + width * 0.15, end_points) # Increased taper
|
|
|
|
# Create tapered ends
|
|
start_curve = np.column_stack((
|
|
start_x,
|
|
np.linspace(bottom_curve[0], top_curve[0], end_points)
|
|
))
|
|
end_curve = np.column_stack((
|
|
end_x,
|
|
np.linspace(bottom_curve[-1], top_curve[-1], end_points)
|
|
))
|
|
|
|
# Combine all points to form a smooth contour
|
|
contour_points = np.vstack([
|
|
start_curve,
|
|
np.column_stack((x, top_curve)),
|
|
end_curve,
|
|
np.column_stack((x[::-1], bottom_curve[::-1]))
|
|
])
|
|
|
|
# Add slight padding for better coverage
|
|
center = np.mean(contour_points, axis=0)
|
|
vectors = contour_points - center
|
|
padded_points = center + vectors * 1.2 # Increased padding slightly
|
|
|
|
return padded_points
|
|
return points
|
|
|
|
def create_eyebrows_mask(face: Face, frame: Frame) -> (np.ndarray, np.ndarray, tuple, np.ndarray):
|
|
mask = np.zeros(frame.shape[:2], dtype=np.uint8)
|
|
eyebrows_cutout = None
|
|
landmarks = face.landmark_2d_106
|
|
if landmarks is not None:
|
|
# Left eyebrow landmarks (97-105) and right eyebrow landmarks (43-51)
|
|
left_eyebrow = landmarks[97:105].astype(np.float32)
|
|
right_eyebrow = landmarks[43:51].astype(np.float32)
|
|
|
|
# Calculate centers and dimensions for each eyebrow
|
|
left_center = np.mean(left_eyebrow, axis=0)
|
|
right_center = np.mean(right_eyebrow, axis=0)
|
|
|
|
# Calculate bounding box with padding
|
|
all_points = np.vstack([left_eyebrow, right_eyebrow])
|
|
min_x = np.min(all_points[:, 0]) - 25
|
|
max_x = np.max(all_points[:, 0]) + 25
|
|
min_y = np.min(all_points[:, 1]) - 20
|
|
max_y = np.max(all_points[:, 1]) + 15
|
|
|
|
# Ensure coordinates are within frame bounds
|
|
min_x = max(0, int(min_x))
|
|
min_y = max(0, int(min_y))
|
|
max_x = min(frame.shape[1], int(max_x))
|
|
max_y = min(frame.shape[0], int(max_y))
|
|
|
|
# Create mask for the eyebrows region
|
|
mask_roi = np.zeros((max_y - min_y, max_x - min_x), dtype=np.uint8)
|
|
|
|
try:
|
|
# Convert points to local coordinates
|
|
left_local = left_eyebrow - [min_x, min_y]
|
|
right_local = right_eyebrow - [min_x, min_y]
|
|
|
|
def create_curved_eyebrow(points):
|
|
if len(points) >= 5:
|
|
# Sort points by x-coordinate
|
|
sorted_idx = np.argsort(points[:, 0])
|
|
sorted_points = points[sorted_idx]
|
|
|
|
# Calculate dimensions
|
|
x_min, y_min = np.min(sorted_points, axis=0)
|
|
x_max, y_max = np.max(sorted_points, axis=0)
|
|
width = x_max - x_min
|
|
height = y_max - y_min
|
|
|
|
# Create more points for smoother curve
|
|
num_points = 50
|
|
x = np.linspace(x_min, x_max, num_points)
|
|
|
|
# Fit quadratic curve through points for more natural arch
|
|
coeffs = np.polyfit(sorted_points[:, 0], sorted_points[:, 1], 2)
|
|
y = np.polyval(coeffs, x)
|
|
|
|
# Increased offsets to create more separation
|
|
top_offset = height * 0.5 # Increased from 0.3 to shift up more
|
|
bottom_offset = height * 0.2 # Increased from 0.1 to shift down more
|
|
|
|
# Create smooth curves
|
|
top_curve = y - top_offset
|
|
bottom_curve = y + bottom_offset
|
|
|
|
# Create curved endpoints with more pronounced taper
|
|
end_points = 5
|
|
start_x = np.linspace(x[0] - width * 0.15, x[0], end_points) # Increased taper
|
|
end_x = np.linspace(x[-1], x[-1] + width * 0.15, end_points) # Increased taper
|
|
|
|
# Create tapered ends
|
|
start_curve = np.column_stack((
|
|
start_x,
|
|
np.linspace(bottom_curve[0], top_curve[0], end_points)
|
|
))
|
|
end_curve = np.column_stack((
|
|
end_x,
|
|
np.linspace(bottom_curve[-1], top_curve[-1], end_points)
|
|
))
|
|
|
|
# Combine all points to form a smooth contour
|
|
contour_points = np.vstack([
|
|
start_curve,
|
|
np.column_stack((x, top_curve)),
|
|
end_curve,
|
|
np.column_stack((x[::-1], bottom_curve[::-1]))
|
|
])
|
|
|
|
# Add slight padding for better coverage
|
|
center = np.mean(contour_points, axis=0)
|
|
vectors = contour_points - center
|
|
padded_points = center + vectors * 1.2 # Increased padding slightly
|
|
|
|
return padded_points
|
|
return points
|
|
|
|
# Generate and draw eyebrow shapes
|
|
left_shape = create_curved_eyebrow(left_local)
|
|
right_shape = create_curved_eyebrow(right_local)
|
|
|
|
# Apply multi-stage blurring for natural feathering
|
|
# First, strong Gaussian blur for initial softening
|
|
mask_roi = cv2.GaussianBlur(mask_roi, (21, 21), 7)
|
|
|
|
# Second, medium blur for transition areas
|
|
mask_roi = cv2.GaussianBlur(mask_roi, (11, 11), 3)
|
|
|
|
# Finally, light blur for fine details
|
|
mask_roi = cv2.GaussianBlur(mask_roi, (5, 5), 1)
|
|
|
|
# Normalize mask values
|
|
mask_roi = cv2.normalize(mask_roi, None, 0, 255, cv2.NORM_MINMAX)
|
|
|
|
# Place the mask ROI in the full-sized mask
|
|
mask[min_y:max_y, min_x:max_x] = mask_roi
|
|
|
|
# Extract the masked area from the frame
|
|
eyebrows_cutout = frame[min_y:max_y, min_x:max_x].copy()
|
|
|
|
# Combine points for visualization
|
|
eyebrows_polygon = np.vstack([
|
|
left_shape + [min_x, min_y],
|
|
right_shape + [min_x, min_y]
|
|
]).astype(np.int32)
|
|
|
|
except Exception as e:
|
|
# Fallback to simple polygons if curve fitting fails
|
|
left_local = left_eyebrow - [min_x, min_y]
|
|
right_local = right_eyebrow - [min_x, min_y]
|
|
cv2.fillPoly(mask_roi, [left_local.astype(np.int32)], 255)
|
|
cv2.fillPoly(mask_roi, [right_local.astype(np.int32)], 255)
|
|
mask_roi = cv2.GaussianBlur(mask_roi, (21, 21), 7)
|
|
mask[min_y:max_y, min_x:max_x] = mask_roi
|
|
eyebrows_cutout = frame[min_y:max_y, min_x:max_x].copy()
|
|
eyebrows_polygon = np.vstack([left_eyebrow, right_eyebrow]).astype(np.int32)
|
|
|
|
return mask, eyebrows_cutout, (min_x, min_y, max_x, max_y), eyebrows_polygon
|
|
|
|
def apply_mask_area(
|
|
frame: np.ndarray,
|
|
cutout: np.ndarray,
|
|
box: tuple,
|
|
face_mask: np.ndarray,
|
|
polygon: np.ndarray,
|
|
) -> np.ndarray:
|
|
min_x, min_y, max_x, max_y = box
|
|
box_width = max_x - min_x
|
|
box_height = max_y - min_y
|
|
|
|
if (
|
|
cutout is None
|
|
or box_width is None
|
|
or box_height is None
|
|
or face_mask is None
|
|
or polygon is None
|
|
):
|
|
return frame
|
|
|
|
try:
|
|
resized_cutout = cv2.resize(cutout, (box_width, box_height))
|
|
roi = frame[min_y:max_y, min_x:max_x]
|
|
|
|
if roi.shape != resized_cutout.shape:
|
|
resized_cutout = cv2.resize(
|
|
resized_cutout, (roi.shape[1], roi.shape[0])
|
|
)
|
|
|
|
color_corrected_area = apply_color_transfer(resized_cutout, roi)
|
|
|
|
# Create mask for the area
|
|
polygon_mask = np.zeros(roi.shape[:2], dtype=np.uint8)
|
|
|
|
# Split points for left and right parts if needed
|
|
if len(polygon) > 50: # Arbitrary threshold to detect if we have multiple parts
|
|
mid_point = len(polygon) // 2
|
|
left_points = polygon[:mid_point] - [min_x, min_y]
|
|
right_points = polygon[mid_point:] - [min_x, min_y]
|
|
cv2.fillPoly(polygon_mask, [left_points], 255)
|
|
cv2.fillPoly(polygon_mask, [right_points], 255)
|
|
else:
|
|
adjusted_polygon = polygon - [min_x, min_y]
|
|
cv2.fillPoly(polygon_mask, [adjusted_polygon], 255)
|
|
|
|
# Apply strong initial feathering
|
|
polygon_mask = cv2.GaussianBlur(polygon_mask, (21, 21), 7)
|
|
|
|
# Apply additional feathering
|
|
feather_amount = min(
|
|
30,
|
|
box_width // modules.globals.mask_feather_ratio,
|
|
box_height // modules.globals.mask_feather_ratio,
|
|
)
|
|
feathered_mask = cv2.GaussianBlur(
|
|
polygon_mask.astype(float), (0, 0), feather_amount
|
|
)
|
|
feathered_mask = feathered_mask / feathered_mask.max()
|
|
|
|
# Apply additional smoothing to the mask edges
|
|
feathered_mask = cv2.GaussianBlur(feathered_mask, (5, 5), 1)
|
|
|
|
face_mask_roi = face_mask[min_y:max_y, min_x:max_x]
|
|
combined_mask = feathered_mask * (face_mask_roi / 255.0)
|
|
|
|
combined_mask = combined_mask[:, :, np.newaxis]
|
|
blended = (
|
|
color_corrected_area * combined_mask + roi * (1 - combined_mask)
|
|
).astype(np.uint8)
|
|
|
|
# Apply face mask to blended result
|
|
face_mask_3channel = (
|
|
np.repeat(face_mask_roi[:, :, np.newaxis], 3, axis=2) / 255.0
|
|
)
|
|
final_blend = blended * face_mask_3channel + roi * (1 - face_mask_3channel)
|
|
|
|
frame[min_y:max_y, min_x:max_x] = final_blend.astype(np.uint8)
|
|
except Exception as e:
|
|
pass
|
|
|
|
return frame
|
|
|
|
def draw_mask_visualization(
|
|
frame: Frame,
|
|
mask_data: tuple,
|
|
label: str,
|
|
draw_method: str = "polygon"
|
|
) -> Frame:
|
|
mask, cutout, (min_x, min_y, max_x, max_y), polygon = mask_data
|
|
|
|
vis_frame = frame.copy()
|
|
|
|
# Ensure coordinates are within frame bounds
|
|
height, width = vis_frame.shape[:2]
|
|
min_x, min_y = max(0, min_x), max(0, min_y)
|
|
max_x, max_y = min(width, max_x), min(height, max_y)
|
|
|
|
if draw_method == "ellipse" and len(polygon) > 50: # For eyes
|
|
# Split points for left and right parts
|
|
mid_point = len(polygon) // 2
|
|
left_points = polygon[:mid_point]
|
|
right_points = polygon[mid_point:]
|
|
|
|
try:
|
|
# Fit ellipses to points - need at least 5 points
|
|
if len(left_points) >= 5 and len(right_points) >= 5:
|
|
# Convert points to the correct format for ellipse fitting
|
|
left_points = left_points.astype(np.float32)
|
|
right_points = right_points.astype(np.float32)
|
|
|
|
# Fit ellipses
|
|
left_ellipse = cv2.fitEllipse(left_points)
|
|
right_ellipse = cv2.fitEllipse(right_points)
|
|
|
|
# Draw the ellipses
|
|
cv2.ellipse(vis_frame, left_ellipse, (0, 255, 0), 2)
|
|
cv2.ellipse(vis_frame, right_ellipse, (0, 255, 0), 2)
|
|
except Exception as e:
|
|
# If ellipse fitting fails, draw simple rectangles as fallback
|
|
left_rect = cv2.boundingRect(left_points)
|
|
right_rect = cv2.boundingRect(right_points)
|
|
cv2.rectangle(vis_frame,
|
|
(left_rect[0], left_rect[1]),
|
|
(left_rect[0] + left_rect[2], left_rect[1] + left_rect[3]),
|
|
(0, 255, 0), 2)
|
|
cv2.rectangle(vis_frame,
|
|
(right_rect[0], right_rect[1]),
|
|
(right_rect[0] + right_rect[2], right_rect[1] + right_rect[3]),
|
|
(0, 255, 0), 2)
|
|
else: # For mouth and eyebrows
|
|
# Draw the polygon
|
|
if len(polygon) > 50: # If we have multiple parts
|
|
mid_point = len(polygon) // 2
|
|
left_points = polygon[:mid_point]
|
|
right_points = polygon[mid_point:]
|
|
cv2.polylines(vis_frame, [left_points], True, (0, 255, 0), 2, cv2.LINE_AA)
|
|
cv2.polylines(vis_frame, [right_points], True, (0, 255, 0), 2, cv2.LINE_AA)
|
|
else:
|
|
cv2.polylines(vis_frame, [polygon], True, (0, 255, 0), 2, cv2.LINE_AA)
|
|
|
|
# Add label
|
|
cv2.putText(
|
|
vis_frame,
|
|
label,
|
|
(min_x, min_y - 10),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.5,
|
|
(255, 255, 255),
|
|
1,
|
|
)
|
|
|
|
return vis_frame |