Deep-Live-Cam/modules/predicter.py

51 lines
1.6 KiB
Python

import numpy
import opennsfw2
from PIL import Image
import cv2
import modules.globals
from modules.typing import Frame
MAX_PROBABILITY = 0.85
# Preload the model once for efficiency
model = None
def predict_frame(target_frame: numpy.ndarray) -> bool:
"""Predict if a frame is NSFW using OpenNSFW2."""
try:
# Convert the frame to RGB before processing if color correction is enabled
if modules.globals.color_correction:
target_frame = cv2.cvtColor(target_frame, cv2.COLOR_BGR2RGB)
image = Image.fromarray(target_frame)
image = opennsfw2.preprocess_image(image, opennsfw2.Preprocessing.YAHOO)
global model
if model is None:
model = opennsfw2.make_open_nsfw_model()
views = numpy.expand_dims(image, axis=0)
_, probability = model.predict(views)[0]
return probability > MAX_PROBABILITY
except Exception as e:
print(f"Error in predict_frame: {e}")
return False
def predict_image(target_path: str) -> bool:
"""Predict if an image file is NSFW."""
try:
return opennsfw2.predict_image(target_path) > MAX_PROBABILITY
except Exception as e:
print(f"Error in predict_image: {e}")
return False
def predict_video(target_path: str) -> bool:
"""Predict if any frame in a video is NSFW."""
try:
_, probabilities = opennsfw2.predict_video_frames(video_path=target_path, frame_interval=100)
return any(probability > MAX_PROBABILITY for probability in probabilities)
except Exception as e:
print(f"Error in predict_video: {e}")
return False