68 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			68 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
from typing import Any, List
 | 
						|
import cv2
 | 
						|
import threading
 | 
						|
import gfpgan
 | 
						|
import os
 | 
						|
 | 
						|
import modules.globals
 | 
						|
import modules.processors.frame.core
 | 
						|
from modules.core import update_status
 | 
						|
from modules.face_analyser import get_one_face
 | 
						|
from modules.typing import Frame, Face  # Ensure these are imported
 | 
						|
from modules.utilities import conditional_download, resolve_relative_path, is_image, is_video
 | 
						|
 | 
						|
FACE_ENHANCER = None
 | 
						|
THREAD_SEMAPHORE = threading.Semaphore()
 | 
						|
THREAD_LOCK = threading.Lock()
 | 
						|
NAME = 'DLC.FACE-ENHANCER'
 | 
						|
 | 
						|
def pre_check() -> bool:
 | 
						|
    download_directory_path = resolve_relative_path('..\models')
 | 
						|
    conditional_download(download_directory_path, ['https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/GFPGANv1.4.pth'])
 | 
						|
    return True
 | 
						|
 | 
						|
def pre_start() -> bool:
 | 
						|
    if not is_image(modules.globals.target_path) and not is_video(modules.globals.target_path):
 | 
						|
        update_status('Select an image or video for target path.', NAME)
 | 
						|
        return False
 | 
						|
    return True
 | 
						|
 | 
						|
def get_face_enhancer() -> Any:
 | 
						|
    global FACE_ENHANCER
 | 
						|
 | 
						|
    with THREAD_LOCK:
 | 
						|
        if FACE_ENHANCER is None:
 | 
						|
            model_path = resolve_relative_path('../models/GFPGANv1.4.pth')
 | 
						|
            FACE_ENHANCER = gfpgan.GFPGANer(model_path=model_path, upscale=1)  # type: ignore[attr-defined]
 | 
						|
    return FACE_ENHANCER
 | 
						|
 | 
						|
def enhance_face(temp_frame: Frame) -> Frame:
 | 
						|
    with THREAD_SEMAPHORE:
 | 
						|
        _, _, temp_frame = get_face_enhancer().enhance(
 | 
						|
            temp_frame,
 | 
						|
            paste_back=True
 | 
						|
        )
 | 
						|
    return temp_frame
 | 
						|
 | 
						|
def process_frame(source_face: Face, temp_frame: Frame) -> Frame:
 | 
						|
    target_face = get_one_face(temp_frame)
 | 
						|
    if target_face:
 | 
						|
        temp_frame = enhance_face(temp_frame)
 | 
						|
    return temp_frame
 | 
						|
 | 
						|
def process_frames(source_path: str, temp_frame_paths: List[str], progress: Any = None) -> None:
 | 
						|
    for temp_frame_path in temp_frame_paths:
 | 
						|
        temp_frame = cv2.imread(temp_frame_path)
 | 
						|
        result = process_frame(None, temp_frame)
 | 
						|
        cv2.imwrite(temp_frame_path, result)
 | 
						|
        if progress:
 | 
						|
            progress.update(1)
 | 
						|
 | 
						|
def process_image(source_path: str, target_path: str, output_path: str) -> None:
 | 
						|
    target_frame = cv2.imread(target_path)
 | 
						|
    result = process_frame(None, target_frame)
 | 
						|
    cv2.imwrite(output_path, result)
 | 
						|
 | 
						|
def process_video(source_path: str, temp_frame_paths: List[str]) -> None:
 | 
						|
    modules.processors.frame.core.process_video(None, temp_frame_paths, process_frames)
 |