Deep-Live-Cam/modules/processors/frame/face_enhancer.py

141 lines
4.4 KiB
Python

import os
import cv2
import threading
import platform
import torch
import modules
import numpy as np
from typing import Any, List
from modules.core import update_status
from modules.face_analyser import get_one_face
from modules.typing import Frame, Face
from modules.utilities import (
conditional_download,
is_image,
is_video,
)
FACE_ENHANCER = None
THREAD_SEMAPHORE = threading.Semaphore()
THREAD_LOCK = threading.Lock()
NAME = "DLC.FACE-ENHANCER"
abs_dir = os.path.dirname(os.path.abspath(__file__))
models_dir = os.path.join(
os.path.dirname(os.path.dirname(os.path.dirname(abs_dir))), "models"
)
def pre_check() -> bool:
"""Ensure required model is downloaded."""
download_directory_path = models_dir
conditional_download(
download_directory_path,
[
"https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/GFPGANv1.4.pth"
],
)
return True
def pre_start() -> bool:
"""Check if target path is valid before starting."""
if not is_image(modules.globals.target_path) and not is_video(
modules.globals.target_path
):
update_status("Select an image or video for target path.", NAME)
return False
return True
TENSORRT_AVAILABLE = False
try:
import tensorrt
TENSORRT_AVAILABLE = True
except ImportError as im:
print(f"TensorRT is not available: {im}")
except Exception as e:
print(f"TensorRT is not available: {e}")
def get_face_enhancer() -> Any:
"""Thread-safe singleton loader for the face enhancer model."""
global FACE_ENHANCER
with THREAD_LOCK:
if FACE_ENHANCER is None:
model_path = os.path.join(models_dir, "GFPGANv1.4.pth")
selected_device = "cpu"
if TENSORRT_AVAILABLE and torch.cuda.is_available():
selected_device = "cuda"
elif torch.cuda.is_available():
selected_device = "cuda"
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available() and platform.system() == "Darwin":
selected_device = "mps"
# Import GFPGAN only when needed
try:
import gfpgan
FACE_ENHANCER = gfpgan.GFPGANer(model_path=model_path, upscale=1, device=selected_device)
except Exception as e:
print(f"Failed to load GFPGAN: {e}")
FACE_ENHANCER = None
return FACE_ENHANCER
def enhance_face(temp_frame: Any) -> Any:
"""Enhance a face in the given frame using GFPGAN."""
with THREAD_SEMAPHORE:
enhancer = get_face_enhancer()
if enhancer is None:
print("Face enhancer model not loaded.")
return temp_frame
try:
_, _, temp_frame = enhancer.enhance(temp_frame, paste_back=True)
except Exception as e:
print(f"Face enhancement failed: {e}")
return temp_frame
def process_frame(source_face: Any, temp_frame: Any) -> Any:
"""Process a single frame for face enhancement."""
target_face = get_one_face(temp_frame)
if target_face:
temp_frame = enhance_face(temp_frame)
return temp_frame
def process_frames(
source_path: str, temp_frame_paths: List[str], progress: Any = None
) -> None:
"""Process a list of frames for face enhancement, updating progress and handling errors."""
for temp_frame_path in temp_frame_paths:
temp_frame = cv2.imread(temp_frame_path)
try:
result = process_frame(None, temp_frame)
cv2.imwrite(temp_frame_path, result)
except Exception as e:
print(f"Frame enhancement failed: {e}")
finally:
if progress:
progress.update(1)
def process_image(source_path: str, target_path: str, output_path: str) -> None:
"""Process a single image for face enhancement."""
target_frame = cv2.imread(target_path)
result = process_frame(None, target_frame)
cv2.imwrite(output_path, result)
def process_video(source_path: str, temp_frame_paths: List[str]) -> None:
"""Process a video for face enhancement."""
modules.processors.frame.core.process_video(None, temp_frame_paths, process_frames)
def process_frame_v2(temp_frame: Any) -> Any:
"""Alternative frame processing for face enhancement (for mapped faces, if needed)."""
target_face = get_one_face(temp_frame)
if target_face:
temp_frame = enhance_face(temp_frame)
return temp_frame