Deep-Live-Cam/modules/processors/frame/face_swapper.py

1006 lines
51 KiB
Python

from typing import Any, List, Optional, Tuple, Callable # Added Callable
import cv2
import insightface
import threading
import numpy as np
import modules.globals
import logging
import modules.processors.frame.core
# from modules.core import update_status # Removed import
from modules.face_analyser import get_one_face, get_many_faces, default_source_face
from modules.typing import Face, Frame
from modules.hair_segmenter import segment_hair
from modules.utilities import (
conditional_download,
is_image,
is_video,
)
from modules.cluster_analysis import find_closest_centroid
import os
import platform # Added for potential platform-specific tracker choices later, though KCF is cross-platform
FACE_SWAPPER = None
THREAD_LOCK = threading.Lock()
NAME = "DLC.FACE-SWAPPER"
abs_dir = os.path.dirname(os.path.abspath(__file__))
models_dir = os.path.join(
os.path.dirname(os.path.dirname(os.path.dirname(abs_dir))), "models"
)
# --- Tracker State Variables ---
TARGET_TRACKER: Optional[cv2.Tracker] = None
LAST_TARGET_KPS: Optional[np.ndarray] = None
LAST_TARGET_BBOX_XYWH: Optional[List[int]] = None
TRACKING_FRAME_COUNTER = 0
DETECTION_INTERVAL = 5 # Process every 5th frame for full detection
LAST_DETECTION_SUCCESS = False
PREV_GRAY_FRAME: Optional[np.ndarray] = None # For optical flow
# --- End Tracker State Variables ---
def reset_tracker_state():
"""Resets all global tracker state variables."""
global TARGET_TRACKER, LAST_TARGET_KPS, LAST_TARGET_BBOX_XYWH
global TRACKING_FRAME_COUNTER, LAST_DETECTION_SUCCESS, PREV_GRAY_FRAME
TARGET_TRACKER = None
LAST_TARGET_KPS = None
LAST_TARGET_BBOX_XYWH = None
TRACKING_FRAME_COUNTER = 0
LAST_DETECTION_SUCCESS = False # Important to ensure first frame after reset does detection
PREV_GRAY_FRAME = None
logging.debug("Global tracker state has been reset.")
def pre_check() -> bool:
# download_directory_path = abs_dir # Old line
download_directory_path = models_dir # New line
conditional_download(
download_directory_path,
[
"https://huggingface.co/hacksider/deep-live-cam/blob/main/inswapper_128_fp16.onnx"
],
)
return True
def pre_start(status_fn_callback: Callable[[str, str], None]) -> bool:
if not modules.globals.map_faces and not is_image(modules.globals.source_path):
status_fn_callback("Select an image for source path.", NAME)
return False
elif not modules.globals.map_faces and not get_one_face(
cv2.imread(modules.globals.source_path)
):
status_fn_callback("No face in source path detected.", NAME)
return False
if not is_image(modules.globals.target_path) and not is_video(
modules.globals.target_path
):
status_fn_callback("Select an image or video for target path.", NAME)
return False
return True
def get_face_swapper() -> Any:
global FACE_SWAPPER
with THREAD_LOCK:
if FACE_SWAPPER is None:
model_path = os.path.join(models_dir, "inswapper_128_fp16.onnx")
FACE_SWAPPER = insightface.model_zoo.get_model(
model_path, providers=modules.globals.execution_providers
)
return FACE_SWAPPER
def _prepare_warped_source_material_and_mask(
source_face_obj: Face,
source_frame_full: Frame,
matrix: np.ndarray,
dsize: tuple
) -> Tuple[Optional[Frame], Optional[Frame]]:
try:
hair_only_mask_source_raw = segment_hair(source_frame_full)
if hair_only_mask_source_raw is None:
logging.error("segment_hair returned None, which is unexpected.")
return None, None
if hair_only_mask_source_raw.ndim == 3 and hair_only_mask_source_raw.shape[2] == 3:
hair_only_mask_source_raw = cv2.cvtColor(hair_only_mask_source_raw, cv2.COLOR_BGR2GRAY)
_, hair_only_mask_source_binary = cv2.threshold(hair_only_mask_source_raw, 127, 255, cv2.THRESH_BINARY)
except Exception as e:
logging.error(f"Hair segmentation failed: {e}", exc_info=True)
return None, None
try:
face_only_mask_source_raw = create_face_mask(source_face_obj, source_frame_full)
if face_only_mask_source_raw is None:
logging.error("create_face_mask returned None, which is unexpected.")
return None, None
_, face_only_mask_source_binary = cv2.threshold(face_only_mask_source_raw, 127, 255, cv2.THRESH_BINARY)
except Exception as e:
logging.error(f"Face mask creation failed for source: {e}", exc_info=True)
return None, None
try:
if face_only_mask_source_binary.shape != hair_only_mask_source_binary.shape:
logging.warning("Resizing hair mask to match face mask for source during preparation.")
hair_only_mask_source_binary = cv2.resize(
hair_only_mask_source_binary,
(face_only_mask_source_binary.shape[1], face_only_mask_source_binary.shape[0]),
interpolation=cv2.INTER_NEAREST
)
actual_combined_source_mask = cv2.bitwise_or(face_only_mask_source_binary, hair_only_mask_source_binary)
actual_combined_source_mask_blurred = cv2.GaussianBlur(actual_combined_source_mask, (5, 5), 3)
warped_full_source_material = cv2.warpAffine(source_frame_full, matrix, dsize)
warped_combined_mask_temp = cv2.warpAffine(actual_combined_source_mask_blurred, matrix, dsize)
_, warped_combined_mask_binary_for_clone = cv2.threshold(warped_combined_mask_temp, 127, 255, cv2.THRESH_BINARY)
except Exception as e:
logging.error(f"Mask combination or warping failed: {e}", exc_info=True)
return None, None
return warped_full_source_material, warped_combined_mask_binary_for_clone
def _blend_material_onto_frame(
base_frame: Frame,
material_to_blend: Frame,
mask_for_blending: Frame
) -> Frame:
x, y, w, h = cv2.boundingRect(mask_for_blending)
output_frame = base_frame
if w > 0 and h > 0:
center = (x + w // 2, y + h // 2)
if material_to_blend.shape == base_frame.shape and \
material_to_blend.dtype == base_frame.dtype and \
mask_for_blending.dtype == np.uint8:
try:
output_frame = cv2.seamlessClone(material_to_blend, base_frame, mask_for_blending, center, cv2.NORMAL_CLONE)
except cv2.error as e:
logging.warning(f"cv2.seamlessClone failed: {e}. Falling back to simple blending.")
boolean_mask = mask_for_blending > 127
output_frame[boolean_mask] = material_to_blend[boolean_mask]
else:
logging.warning("Mismatch in shape/type for seamlessClone. Falling back to simple blending.")
boolean_mask = mask_for_blending > 127
output_frame[boolean_mask] = material_to_blend[boolean_mask]
else:
logging.info("Warped mask for blending is empty. Skipping blending.")
return output_frame
def swap_face(source_face_obj: Face, target_face: Face, source_frame_full: Frame, temp_frame: Frame) -> Frame:
face_swapper = get_face_swapper()
swapped_frame = face_swapper.get(temp_frame, target_face, source_face_obj, paste_back=True)
final_swapped_frame = swapped_frame
if getattr(modules.globals, 'enable_hair_swapping', True):
if not (source_face_obj.kps is not None and \
target_face.kps is not None and \
source_face_obj.kps.shape[0] >= 3 and \
target_face.kps.shape[0] >= 3):
logging.warning(
f"Skipping hair blending due to insufficient keypoints. "
f"Source kps: {source_face_obj.kps.shape if source_face_obj.kps is not None else 'None'}, "
f"Target kps: {target_face.kps.shape if target_face.kps is not None else 'None'}."
)
else:
source_kps_float = source_face_obj.kps.astype(np.float32)
target_kps_float = target_face.kps.astype(np.float32)
matrix, _ = cv2.estimateAffinePartial2D(source_kps_float, target_kps_float, method=cv2.LMEDS)
if matrix is None:
logging.warning("Failed to estimate affine transformation matrix for hair. Skipping hair blending.")
else:
dsize = (temp_frame.shape[1], temp_frame.shape[0])
warped_material, warped_mask = _prepare_warped_source_material_and_mask(
source_face_obj, source_frame_full, matrix, dsize
)
if warped_material is not None and warped_mask is not None:
final_swapped_frame = swapped_frame.copy()
try:
color_corrected_material = apply_color_transfer(warped_material, final_swapped_frame)
except Exception as e:
logging.warning(f"Color transfer failed: {e}. Proceeding with uncorrected material for hair blending.", exc_info=True)
color_corrected_material = warped_material
final_swapped_frame = _blend_material_onto_frame(
final_swapped_frame,
color_corrected_material,
warped_mask
)
if modules.globals.mouth_mask:
if final_swapped_frame is swapped_frame:
final_swapped_frame = swapped_frame.copy()
face_mask_for_mouth = create_face_mask(target_face, temp_frame)
mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon = (
create_lower_mouth_mask(target_face, temp_frame)
)
final_swapped_frame = apply_mouth_area(
final_swapped_frame, mouth_cutout, mouth_box, face_mask_for_mouth, lower_lip_polygon
)
if modules.globals.show_mouth_mask_box:
mouth_mask_data = (mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon)
final_swapped_frame = draw_mouth_mask_visualization(
final_swapped_frame, target_face, mouth_mask_data
)
return final_swapped_frame
def process_frame(source_face_obj: Face, source_frame_full: Frame, temp_frame: Frame) -> Frame:
global TARGET_TRACKER, LAST_TARGET_KPS, LAST_TARGET_BBOX_XYWH
global TRACKING_FRAME_COUNTER, DETECTION_INTERVAL, LAST_DETECTION_SUCCESS, PREV_GRAY_FRAME
if modules.globals.color_correction: # This should apply to temp_frame before gray conversion
temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
current_gray_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2GRAY)
target_face_to_swap = None
if modules.globals.many_faces:
# Tracking logic is not applied for many_faces mode in this iteration
# Revert to Nth frame detection for all faces in many_faces mode for now for performance
TRACKING_FRAME_COUNTER += 1
if TRACKING_FRAME_COUNTER % DETECTION_INTERVAL == 0:
logging.debug(f"Frame {TRACKING_FRAME_COUNTER} (ManyFaces): Running full detection.")
many_faces_detected = get_many_faces(temp_frame)
if many_faces_detected:
for target_face_data in many_faces_detected:
if source_face_obj and target_face_data:
temp_frame = swap_face(source_face_obj, target_face_data, source_frame_full, temp_frame)
LAST_DETECTION_SUCCESS = bool(many_faces_detected) # Update based on if any face was found
else:
# For many_faces on non-detection frames, we currently don't have individual trackers.
# The frame will pass through without additional swapping if we don't store and reuse old face data.
# This means non-detection frames in many_faces mode might show unsynced swaps or no swaps if not handled.
# For now, it means only Nth frame gets swaps in many_faces.
logging.debug(f"Frame {TRACKING_FRAME_COUNTER} (ManyFaces): Skipping swap on intermediate frame.")
pass
else:
# --- Single Face Mode with Tracking ---
TRACKING_FRAME_COUNTER += 1
if TRACKING_FRAME_COUNTER % DETECTION_INTERVAL == 0 or not LAST_DETECTION_SUCCESS:
logging.debug(f"Frame {TRACKING_FRAME_COUNTER}: Running full detection.")
actual_target_face_data = get_one_face(temp_frame) # get_one_face returns a Face object or None
if actual_target_face_data:
target_face_to_swap = actual_target_face_data
if actual_target_face_data.kps is not None:
LAST_TARGET_KPS = actual_target_face_data.kps.copy()
else: # Should not happen with buffalo_l but good for robustness
LAST_TARGET_KPS = None
bbox_xyxy = actual_target_face_data.bbox
LAST_TARGET_BBOX_XYWH = [int(bbox_xyxy[0]), int(bbox_xyxy[1]), int(bbox_xyxy[2] - bbox_xyxy[0]), int(bbox_xyxy[3] - bbox_xyxy[1])]
try:
TARGET_TRACKER = cv2.TrackerKCF_create()
TARGET_TRACKER.init(temp_frame, tuple(LAST_TARGET_BBOX_XYWH))
LAST_DETECTION_SUCCESS = True
logging.debug(f"Frame {TRACKING_FRAME_COUNTER}: Detection SUCCESS, tracker initialized.")
except Exception as e:
logging.error(f"Failed to initialize tracker: {e}", exc_info=True)
TARGET_TRACKER = None
LAST_DETECTION_SUCCESS = False
else:
logging.debug(f"Frame {TRACKING_FRAME_COUNTER}: Full detection FAILED.")
LAST_DETECTION_SUCCESS = False
TARGET_TRACKER = None
else: # Intermediate frame, try to track
if TARGET_TRACKER is not None and PREV_GRAY_FRAME is not None and LAST_TARGET_KPS is not None:
logging.debug(f"Frame {TRACKING_FRAME_COUNTER}: Attempting track.")
success_tracker, new_bbox_xywh_float = TARGET_TRACKER.update(temp_frame)
if success_tracker:
logging.debug(f"Frame {TRACKING_FRAME_COUNTER}: KCF Tracking SUCCESS.")
new_bbox_xywh = [int(v) for v in new_bbox_xywh_float]
lk_params = dict(winSize=(15, 15), maxLevel=2, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
tracked_kps_float32 = LAST_TARGET_KPS.astype(np.float32) # Optical flow needs float32
new_kps_tracked, opt_flow_status, opt_flow_err = cv2.calcOpticalFlowPyrLK(
PREV_GRAY_FRAME, current_gray_frame, tracked_kps_float32, None, **lk_params
)
if new_kps_tracked is not None and opt_flow_status is not None:
good_new_kps = new_kps_tracked[opt_flow_status.ravel() == 1]
# good_old_kps_for_ref = tracked_kps_float32[opt_flow_status.ravel() == 1]
if len(good_new_kps) >= 3: # Need at least 3 points for stability
current_kps = good_new_kps
new_bbox_xyxy_np = np.array([
new_bbox_xywh[0],
new_bbox_xywh[1],
new_bbox_xywh[0] + new_bbox_xywh[2],
new_bbox_xywh[1] + new_bbox_xywh[3]
], dtype=np.float32) # insightface Face expects float bbox
# Construct Face object (ensure all required fields are present, others None)
target_face_to_swap = Face(
bbox=new_bbox_xyxy_np,
kps=current_kps.astype(np.float32), # kps are float
det_score=0.90, # Indicate high confidence for tracked face
landmark_3d_68=None,
landmark_2d_106=None,
gender=None,
age=None,
embedding=None, # Not available from tracking
normed_embedding=None # Not available from tracking
)
LAST_TARGET_KPS = current_kps.copy()
LAST_TARGET_BBOX_XYWH = new_bbox_xywh
LAST_DETECTION_SUCCESS = True
logging.debug(f"Frame {TRACKING_FRAME_COUNTER}: Optical Flow SUCCESS, {len(good_new_kps)} points tracked.")
else:
logging.debug(f"Frame {TRACKING_FRAME_COUNTER}: Optical flow lost too many KPS ({len(good_new_kps)} found). Triggering re-detection.")
LAST_DETECTION_SUCCESS = False
TARGET_TRACKER = None
else:
logging.debug(f"Frame {TRACKING_FRAME_COUNTER}: Optical flow calculation failed. Triggering re-detection.")
LAST_DETECTION_SUCCESS = False
TARGET_TRACKER = None
else:
logging.debug(f"Frame {TRACKING_FRAME_COUNTER}: KCF Tracking FAILED. Triggering re-detection.")
LAST_DETECTION_SUCCESS = False
TARGET_TRACKER = None
else:
logging.debug(f"Frame {TRACKING_FRAME_COUNTER}: No active tracker or prerequisite data. Skipping track.")
# target_face_to_swap remains None
if target_face_to_swap and source_face_obj:
temp_frame = swap_face(source_face_obj, target_face_to_swap, source_frame_full, temp_frame)
else:
if TRACKING_FRAME_COUNTER % DETECTION_INTERVAL == 0 and not LAST_DETECTION_SUCCESS: # Only log if it was a detection attempt that failed
logging.info("Target face not found by detection in process_frame.")
PREV_GRAY_FRAME = current_gray_frame.copy() # Update for the next frame
return temp_frame
def _process_image_target_v2(source_frame_full: Frame, temp_frame: Frame) -> Frame:
if modules.globals.many_faces:
source_face_obj = default_source_face()
if source_face_obj:
for map_item in modules.globals.source_target_map:
target_face = map_item["target"]["face"]
temp_frame = swap_face(source_face_obj, target_face, source_frame_full, temp_frame)
else: # not many_faces
for map_item in modules.globals.source_target_map:
if "source" in map_item:
source_face_obj = map_item["source"]["face"]
target_face = map_item["target"]["face"]
temp_frame = swap_face(source_face_obj, target_face, source_frame_full, temp_frame)
return temp_frame
def _process_video_target_v2(source_frame_full: Frame, temp_frame: Frame, temp_frame_path: str) -> Frame:
if modules.globals.many_faces:
source_face_obj = default_source_face()
if source_face_obj:
for map_item in modules.globals.source_target_map:
target_frames_data = [f for f in map_item.get("target_faces_in_frame", []) if f.get("location") == temp_frame_path]
for frame_data in target_frames_data:
for target_face in frame_data.get("faces", []):
temp_frame = swap_face(source_face_obj, target_face, source_frame_full, temp_frame)
else: # not many_faces
for map_item in modules.globals.source_target_map:
if "source" in map_item:
source_face_obj = map_item["source"]["face"]
target_frames_data = [f for f in map_item.get("target_faces_in_frame", []) if f.get("location") == temp_frame_path]
for frame_data in target_frames_data:
for target_face in frame_data.get("faces", []):
temp_frame = swap_face(source_face_obj, target_face, source_frame_full, temp_frame)
return temp_frame
def _process_live_target_v2(source_frame_full: Frame, temp_frame: Frame) -> Frame:
# This function is called by UI directly for webcam when map_faces is True.
# It now uses the same Nth frame + tracking logic as process_frame for its single-face path.
global TARGET_TRACKER, LAST_TARGET_KPS, LAST_TARGET_BBOX_XYWH
global TRACKING_FRAME_COUNTER, DETECTION_INTERVAL, LAST_DETECTION_SUCCESS, PREV_GRAY_FRAME
current_gray_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2GRAY) # Needed for optical flow
if modules.globals.many_faces:
# For many_faces in map_faces=True live mode, use existing logic (detect all, swap all with default source)
# This part does not use the new tracking logic.
TRACKING_FRAME_COUNTER += 1 # Still increment for consistency, though not strictly for Nth frame here
if TRACKING_FRAME_COUNTER % DETECTION_INTERVAL == 0: # Optional: Nth frame for many_faces too
detected_faces = get_many_faces(temp_frame)
if detected_faces:
source_face_obj = default_source_face()
if source_face_obj:
for target_face in detected_faces:
temp_frame = swap_face(source_face_obj, target_face, source_frame_full, temp_frame)
# On non-detection frames for many_faces, no swap occurs unless we cache all detected faces, which is complex.
else: # Not many_faces (single face logic with tracking or simple_map)
TRACKING_FRAME_COUNTER += 1
target_face_to_swap = None
if TRACKING_FRAME_COUNTER % DETECTION_INTERVAL == 0 or not LAST_DETECTION_SUCCESS:
logging.debug(f"Frame {TRACKING_FRAME_COUNTER} (Live V2): Running full detection.")
detected_faces = get_many_faces(temp_frame) # Get all faces
actual_target_face_data = None
if detected_faces:
if modules.globals.simple_map and modules.globals.simple_map.get("target_embeddings") and modules.globals.simple_map["target_embeddings"][0] is not None:
# Try to find the "main" target face from simple_map's first entry
# This assumes the first simple_map entry is the one to track.
try:
closest_idx, _ = find_closest_centroid([face.normed_embedding for face in detected_faces], modules.globals.simple_map["target_embeddings"][0])
if closest_idx < len(detected_faces):
actual_target_face_data = detected_faces[closest_idx]
except Exception as e_centroid: # Broad exception for safety with list indexing
logging.warning(f"Error finding closest centroid for simple_map in live_v2: {e_centroid}")
actual_target_face_data = detected_faces[0] # Fallback
else: # Fallback if no simple_map or if logic above fails
actual_target_face_data = detected_faces[0]
if actual_target_face_data:
target_face_to_swap = actual_target_face_data
if actual_target_face_data.kps is not None:
LAST_TARGET_KPS = actual_target_face_data.kps.copy()
else:
LAST_TARGET_KPS = None
bbox_xyxy = actual_target_face_data.bbox
LAST_TARGET_BBOX_XYWH = [int(bbox_xyxy[0]), int(bbox_xyxy[1]), int(bbox_xyxy[2] - bbox_xyxy[0]), int(bbox_xyxy[3] - bbox_xyxy[1])]
try:
TARGET_TRACKER = cv2.TrackerKCF_create()
TARGET_TRACKER.init(temp_frame, tuple(LAST_TARGET_BBOX_XYWH))
LAST_DETECTION_SUCCESS = True
except Exception as e:
logging.error(f"Failed to initialize tracker (Live V2): {e}", exc_info=True)
TARGET_TRACKER = None; LAST_DETECTION_SUCCESS = False
else:
LAST_DETECTION_SUCCESS = False; TARGET_TRACKER = None
else: # Intermediate frame tracking
if TARGET_TRACKER is not None and PREV_GRAY_FRAME is not None and LAST_TARGET_KPS is not None:
success_tracker, new_bbox_xywh_float = TARGET_TRACKER.update(temp_frame)
if success_tracker:
new_bbox_xywh = [int(v) for v in new_bbox_xywh_float]
lk_params = dict(winSize=(15, 15), maxLevel=2, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
tracked_kps_float32 = LAST_TARGET_KPS.astype(np.float32)
new_kps_tracked, opt_flow_status, _ = cv2.calcOpticalFlowPyrLK(PREV_GRAY_FRAME, current_gray_frame, tracked_kps_float32, None, **lk_params)
if new_kps_tracked is not None and opt_flow_status is not None:
good_new_kps = new_kps_tracked[opt_flow_status.ravel() == 1]
if len(good_new_kps) >= 3:
current_kps = good_new_kps
new_bbox_xyxy_np = np.array([new_bbox_xywh[0], new_bbox_xywh[1], new_bbox_xywh[0] + new_bbox_xywh[2], new_bbox_xywh[1] + new_bbox_xywh[3]], dtype=np.float32)
target_face_to_swap = Face(bbox=new_bbox_xyxy_np, kps=current_kps.astype(np.float32), det_score=0.90, landmark_3d_68=None, landmark_2d_106=None, gender=None, age=None, embedding=None, normed_embedding=None)
LAST_TARGET_KPS = current_kps.copy()
LAST_TARGET_BBOX_XYWH = new_bbox_xywh
LAST_DETECTION_SUCCESS = True
else: # Optical flow lost points
LAST_DETECTION_SUCCESS = False; TARGET_TRACKER = None
else: # Optical flow failed
LAST_DETECTION_SUCCESS = False; TARGET_TRACKER = None
else: # KCF Tracker failed
LAST_DETECTION_SUCCESS = False; TARGET_TRACKER = None
# Perform swap using the determined target_face_to_swap
if target_face_to_swap:
# Determine source face based on simple_map (if available and target_face_to_swap has embedding for matching)
# This part requires target_face_to_swap to have 'normed_embedding' if we want to use simple_map matching.
# Tracked faces currently don't have embedding. So, this will likely use default_source_face.
source_face_obj_to_use = None
if modules.globals.simple_map and modules.globals.simple_map.get("target_embeddings") and hasattr(target_face_to_swap, 'normed_embedding') and target_face_to_swap.normed_embedding is not None:
closest_centroid_index, _ = find_closest_centroid(modules.globals.simple_map["target_embeddings"], target_face_to_swap.normed_embedding)
if closest_centroid_index < len(modules.globals.simple_map["source_faces"]):
source_face_obj_to_use = modules.globals.simple_map["source_faces"][closest_centroid_index]
if source_face_obj_to_use is None: # Fallback if no match or no embedding
source_face_obj_to_use = default_source_face()
if source_face_obj_to_use:
temp_frame = swap_face(source_face_obj_to_use, target_face_to_swap, source_frame_full, temp_frame)
else:
logging.warning("No source face available for tracked/detected target in _process_live_target_v2 (single).")
elif TRACKING_FRAME_COUNTER % DETECTION_INTERVAL == 0 and not LAST_DETECTION_SUCCESS:
logging.info("Target face not found in _process_live_target_v2 (single face path).")
PREV_GRAY_FRAME = current_gray_frame.copy()
return temp_frame
def process_frame_v2(source_frame_full: Frame, temp_frame: Frame, temp_frame_path: str = "") -> Frame:
if is_image(modules.globals.target_path):
return _process_image_target_v2(source_frame_full, temp_frame)
elif is_video(modules.globals.target_path):
# For video files with map_faces=True, use the original _process_video_target_v2
# as tracking state management across distinct mapped faces is complex and not yet implemented.
# The Nth frame + tracking is primarily for single face mode or live mode.
return _process_video_target_v2(source_frame_full, temp_frame, temp_frame_path) # Original logic without tracking
else: # This is the live cam / generic case (map_faces=True)
return _process_live_target_v2(source_frame_full, temp_frame)
def process_frames(
source_path: str, temp_frame_paths: List[str], progress: Any = None
) -> None:
source_img = cv2.imread(source_path)
if source_img is None:
logging.error(f"Failed to read source image from {source_path}")
return
if not is_video(modules.globals.target_path): # Reset only if not a video (video handles it in process_video)
reset_tracker_state()
if not modules.globals.map_faces:
source_face_obj = get_one_face(source_img)
if not source_face_obj:
logging.error(f"No face detected in source image {source_path}")
return
for temp_frame_path in temp_frame_paths:
temp_frame = cv2.imread(temp_frame_path)
if temp_frame is None:
logging.warning(f"Failed to read temp_frame from {temp_frame_path}, skipping.")
continue
try:
result = process_frame(source_face_obj, source_img, temp_frame)
cv2.imwrite(temp_frame_path, result)
except Exception as exception:
logging.error(f"Error processing frame {temp_frame_path}: {exception}", exc_info=True)
pass
if progress:
progress.update(1)
else:
for temp_frame_path in temp_frame_paths:
temp_frame = cv2.imread(temp_frame_path)
if temp_frame is None:
logging.warning(f"Failed to read temp_frame from {temp_frame_path}, skipping.")
continue
try:
result = process_frame_v2(source_img, temp_frame, temp_frame_path)
cv2.imwrite(temp_frame_path, result)
except Exception as exception:
logging.error(f"Error processing frame {temp_frame_path} with map_faces: {exception}", exc_info=True)
pass
if progress:
progress.update(1)
def process_image(source_path: str, target_path: str, output_path: str, status_fn_callback: Callable[[str, str], None]) -> None:
source_img = cv2.imread(source_path)
if source_img is None:
logging.error(f"Failed to read source image from {source_path}")
return
original_target_frame = cv2.imread(target_path)
if original_target_frame is None:
logging.error(f"Failed to read original target image from {target_path}")
return
result = None
reset_tracker_state() # Ensure fresh state for single image processing
if not modules.globals.map_faces:
source_face_obj = get_one_face(source_img)
if not source_face_obj:
logging.error(f"No face detected in source image {source_path}")
return
result = process_frame(source_face_obj, source_img, original_target_frame)
else:
if modules.globals.many_faces:
status_fn_callback(
"Many faces enabled. Using first source image. Progressing...", NAME
)
result = process_frame_v2(source_img, original_target_frame, target_path)
if result is not None:
cv2.imwrite(output_path, result)
else:
logging.error(f"Processing image {target_path} failed, result was None.")
def process_video(source_path: str, temp_frame_paths: List[str], status_fn_callback: Callable[[str, str], None]) -> None:
reset_tracker_state() # Ensure fresh state for each video processing
if modules.globals.map_faces and modules.globals.many_faces:
status_fn_callback(
"Many faces enabled. Using first source image. Progressing...", NAME
)
modules.processors.frame.core.process_video(
source_path, temp_frame_paths, process_frames
)
def create_lower_mouth_mask(
face: Face, frame: Frame
) -> Tuple[np.ndarray, Optional[np.ndarray], Tuple[int, int, int, int], Optional[np.ndarray]]:
mask = np.zeros(frame.shape[:2], dtype=np.uint8)
mouth_cutout = None
lower_lip_polygon_details = None # Initialize to ensure it's always defined
if face.landmark_2d_106 is None:
logging.debug("Skipping lower_mouth_mask due to missing landmark_2d_106 (likely a tracked face).")
return mask, None, (0,0,0,0), None
landmarks = face.landmark_2d_106
lower_lip_order = [
65, 66, 62, 70, 69, 18, 19, 20, 21, 22,
23, 24, 0, 8, 7, 6, 5, 4, 3, 2, 65,
]
try:
lower_lip_landmarks = landmarks[lower_lip_order].astype(np.float32)
except IndexError:
logging.warning("Failed to get lower_lip_landmarks due to landmark indexing issue.")
return mask, None, (0,0,0,0), None
center = np.mean(lower_lip_landmarks, axis=0)
expansion_factor = (1 + modules.globals.mask_down_size)
expanded_landmarks = (lower_lip_landmarks - center) * expansion_factor + center
toplip_indices = [20, 0, 1, 2, 3, 4, 5]
toplip_extension = (modules.globals.mask_size * 0.5)
for idx in toplip_indices:
direction = expanded_landmarks[idx] - center
norm_direction = np.linalg.norm(direction)
if norm_direction == 0: continue
expanded_landmarks[idx] += (direction / norm_direction) * toplip_extension
chin_indices = [11, 12, 13, 14, 15, 16]
chin_extension = 2 * 0.2
for idx in chin_indices:
expanded_landmarks[idx][1] += (expanded_landmarks[idx][1] - center[1]) * chin_extension
expanded_landmarks = expanded_landmarks.astype(np.int32)
min_x, min_y = np.min(expanded_landmarks, axis=0)
max_x, max_y = np.max(expanded_landmarks, axis=0)
padding = int((max_x - min_x) * 0.1)
min_x = max(0, min_x - padding)
min_y = max(0, min_y - padding)
max_x = min(frame.shape[1] - 1, max_x + padding) # Ensure max_x is within bounds
max_y = min(frame.shape[0] - 1, max_y + padding) # Ensure max_y is within bounds
# Ensure min is less than max after adjustments
if max_x <= min_x: max_x = min_x + 1
if max_y <= min_y: max_y = min_y + 1
# Ensure ROI dimensions are positive
if max_y - min_y <= 0 or max_x - min_x <= 0:
logging.warning(f"Invalid ROI for mouth mask creation: min_x={min_x}, max_x={max_x}, min_y={min_y}, max_y={max_y}")
return mask, None, (min_x, min_y, max_x, max_y), None # Return current min/max for bbox
mask_roi = np.zeros((max_y - min_y, max_x - min_x), dtype=np.uint8)
# Adjust landmarks to be relative to the ROI
adjusted_landmarks = expanded_landmarks - [min_x, min_y]
cv2.fillPoly(mask_roi, [adjusted_landmarks], 255)
# Apply Gaussian blur to soften the mask edges
# Ensure kernel size is odd and positive
blur_kernel_size = (15, 15) # Make sure this is appropriate
if blur_kernel_size[0] % 2 == 0: blur_kernel_size = (blur_kernel_size[0]+1, blur_kernel_size[1])
if blur_kernel_size[1] % 2 == 0: blur_kernel_size = (blur_kernel_size[0], blur_kernel_size[1]+1)
if blur_kernel_size[0] <=0 : blur_kernel_size = (1, blur_kernel_size[1])
if blur_kernel_size[1] <=0 : blur_kernel_size = (blur_kernel_size[0], 1)
mask_roi = cv2.GaussianBlur(mask_roi, blur_kernel_size, 5) # Sigma might also need tuning
mask[min_y:max_y, min_x:max_x] = mask_roi
mouth_cutout = frame[min_y:max_y, min_x:max_x].copy()
lower_lip_polygon_details = expanded_landmarks
return mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon_details
def draw_mouth_mask_visualization(
frame: Frame, face: Face, mouth_mask_data: tuple
) -> Frame:
if face.landmark_2d_106 is None or mouth_mask_data is None or mouth_mask_data[1] is None:
logging.debug("Skipping mouth mask visualization due to missing landmarks or data.")
return frame
mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon = mouth_mask_data
if mouth_cutout is None or lower_lip_polygon is None:
logging.debug("Skipping mouth mask visualization due to missing mouth_cutout or polygon.")
return frame
vis_frame = frame.copy()
height, width = vis_frame.shape[:2]
min_x, min_y = max(0, min_x), max(0, min_y)
max_x, max_y = min(width, max_x), min(height, max_y)
if max_y - min_y <= 0 or max_x - min_x <= 0:
logging.warning("Invalid ROI for mouth mask visualization.")
return vis_frame
mask_region = mask[0 : max_y - min_y, 0 : max_x - min_x] # This line might be problematic if mask is full frame
cv2.polylines(vis_frame, [lower_lip_polygon], True, (0, 255, 0), 2) # This uses original lower_lip_polygon coordinates
# For displaying the mask itself, it's better to show the ROI where it was applied
# or create a version of the mask that is full frame for visualization.
# The current `mask_region` is a crop of the full `mask`.
# Let's ensure we are visualizing the correct part or the full mask.
# If `mask` is the full-frame mask, and `mask_region` was just for feathering calculation,
# then we should use `mask` for display or a ROI from `mask`.
# To make vis_frame part where mask is applied red (for example):
# vis_frame_roi = vis_frame[min_y:max_y, min_x:max_x]
# boolean_mask_roi = mask[min_y:max_y, min_x:max_x] > 127 # Assuming mask is full frame
# if vis_frame_roi.shape[:2] == boolean_mask_roi.shape:
# vis_frame_roi[boolean_mask_roi] = [0,0,255] # Red where mask is active
# The existing feathering logic for visualization:
feather_amount = max(1, min(30,
(max_x - min_x) // modules.globals.mask_feather_ratio if (max_x - min_x) > 0 and modules.globals.mask_feather_ratio > 0 else 1,
(max_y - min_y) // modules.globals.mask_feather_ratio if (max_y - min_y) > 0 and modules.globals.mask_feather_ratio > 0 else 1
))
kernel_size = 2 * feather_amount + 1
# Assuming mask_region was correctly extracted for visualization purposes (e.g., a crop of the mask)
# If mask_region is intended to be the mask that was applied, its size should match the ROI.
if mask_region.size > 0 and mask_region.shape[0] == (max_y-min_y) and mask_region.shape[1] == (max_x-min_x):
feathered_mask_vis = cv2.GaussianBlur(mask_region.astype(float), (kernel_size, kernel_size), 0)
max_val = feathered_mask_vis.max()
if max_val > 0: feathered_mask_vis = (feathered_mask_vis / max_val * 255).astype(np.uint8)
else: feathered_mask_vis = np.zeros_like(mask_region, dtype=np.uint8)
# Create a 3-channel version of the feathered mask for overlay if desired
# feathered_mask_vis_3ch = cv2.cvtColor(feathered_mask_vis, cv2.COLOR_GRAY2BGR)
# vis_frame_roi = vis_frame[min_y:max_y, min_x:max_x]
# blended_roi = cv2.addWeighted(vis_frame_roi, 0.7, feathered_mask_vis_3ch, 0.3, 0)
# vis_frame[min_y:max_y, min_x:max_x] = blended_roi
else:
# If mask_region is not what we expect, log or handle.
# For now, we'll skip drawing the feathered_mask part if dimensions mismatch.
logging.debug("Skipping feathered mask visualization part due to mask_region issues.")
cv2.putText(vis_frame, "Lower Mouth Mask (Polygon)", (min_x, min_y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
# cv2.putText(vis_frame, "Feathered Mask (Visualization)", (min_x, max_y + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) # Optional text
return vis_frame
def apply_mouth_area(
frame: np.ndarray,
mouth_cutout: np.ndarray,
mouth_box: tuple,
face_mask: np.ndarray,
mouth_polygon: np.ndarray,
) -> np.ndarray:
if mouth_polygon is None or mouth_cutout is None:
logging.debug("Skipping apply_mouth_area due to missing mouth_polygon or mouth_cutout.")
return frame
min_x, min_y, max_x, max_y = mouth_box
box_width = max_x - min_x
box_height = max_y - min_y
if box_width <= 0 or box_height <= 0 or face_mask is None:
logging.debug(f"Skipping apply_mouth_area due to invalid box dimensions or missing face_mask. W:{box_width} H:{box_height}")
return frame
try:
# Ensure ROI is valid before attempting to access frame data
if min_y >= max_y or min_x >= max_x:
logging.warning(f"Invalid ROI for applying mouth area: min_x={min_x}, max_x={max_x}, min_y={min_y}, max_y={max_y}")
return frame
roi = frame[min_y:max_y, min_x:max_x]
# Resize mouth_cutout to match the ROI dimensions if they differ
if roi.shape[:2] != mouth_cutout.shape[:2]:
resized_mouth_cutout = cv2.resize(mouth_cutout, (roi.shape[1], roi.shape[0]))
else:
resized_mouth_cutout = mouth_cutout
color_corrected_mouth = apply_color_transfer(resized_mouth_cutout, roi)
# Create polygon_mask for the ROI
polygon_mask = np.zeros(roi.shape[:2], dtype=np.uint8)
adjusted_polygon = mouth_polygon - [min_x, min_y]
cv2.fillPoly(polygon_mask, [adjusted_polygon.astype(np.int32)], 255) # Ensure polygon points are int32
# Calculate feathering based on ROI dimensions
feather_amount = max(1, min(30,
roi.shape[1] // modules.globals.mask_feather_ratio if modules.globals.mask_feather_ratio > 0 else 30,
roi.shape[0] // modules.globals.mask_feather_ratio if modules.globals.mask_feather_ratio > 0 else 30
))
kernel_size_blur = 2 * feather_amount + 1 # Ensure it's odd
if kernel_size_blur <= 0: kernel_size_blur = 1 # Ensure positive
feathered_mask_float = cv2.GaussianBlur(polygon_mask.astype(float), (kernel_size_blur, kernel_size_blur), 0)
max_val = feathered_mask_float.max()
feathered_mask_normalized = feathered_mask_float / max_val if max_val > 0 else feathered_mask_float
# Ensure face_mask_roi matches dimensions of feathered_mask_normalized
face_mask_roi = face_mask[min_y:max_y, min_x:max_x]
if face_mask_roi.shape != feathered_mask_normalized.shape:
face_mask_roi = cv2.resize(face_mask_roi, (feathered_mask_normalized.shape[1], feathered_mask_normalized.shape[0]))
logging.warning("Resized face_mask_roi to match feathered_mask_normalized in apply_mouth_area.")
combined_mask_float = feathered_mask_normalized * (face_mask_roi / 255.0)
combined_mask_3ch = combined_mask_float[:, :, np.newaxis] # Ensure broadcasting for 3 channels
# Ensure all inputs to blending are float32 for precision, then convert back to uint8
blended_float = (
color_corrected_mouth.astype(np.float32) * combined_mask_3ch +
roi.astype(np.float32) * (1.0 - combined_mask_3ch) # Ensure 1.0 for float subtraction
)
blended = np.clip(blended_float, 0, 255).astype(np.uint8)
frame[min_y:max_y, min_x:max_x] = blended
except Exception as e:
logging.error(f"Error in apply_mouth_area: {e}", exc_info=True)
return frame
def create_face_mask(face: Face, frame: Frame) -> np.ndarray:
mask = np.zeros(frame.shape[:2], dtype=np.uint8)
landmarks = face.landmark_2d_106
if landmarks is None:
logging.debug("Face landmarks (landmark_2d_106) not available for face mask creation (likely tracked face). Using bbox as fallback.")
if face.bbox is not None:
x1, y1, x2, y2 = face.bbox.astype(int)
# Ensure coordinates are within frame boundaries
fh, fw = frame.shape[:2]
x1, y1 = max(0, x1), max(0, y1)
x2, y2 = min(fw - 1, x2), min(fh - 1, y2)
if x1 < x2 and y1 < y2:
center_x = (x1 + x2) // 2
center_y = (y1 + y2) // 2
width = x2 - x1
height = y2 - y1
cv2.ellipse(mask, (center_x, center_y), (int(width * 0.6), int(height * 0.7)), 0, 0, 360, 255, -1)
# Ensure kernel size is odd and positive for GaussianBlur
blur_kernel_size_face = (15,15) # Example, can be tuned
if blur_kernel_size_face[0] % 2 == 0: blur_kernel_size_face = (blur_kernel_size_face[0]+1, blur_kernel_size_face[1])
if blur_kernel_size_face[1] % 2 == 0: blur_kernel_size_face = (blur_kernel_size_face[0], blur_kernel_size_face[1]+1)
if blur_kernel_size_face[0] <=0 : blur_kernel_size_face = (1, blur_kernel_size_face[1])
if blur_kernel_size_face[1] <=0 : blur_kernel_size_face = (blur_kernel_size_face[0], 1)
mask = cv2.GaussianBlur(mask, blur_kernel_size_face, 5)
return mask
landmarks = landmarks.astype(np.int32)
right_side_face = landmarks[0:16]
left_side_face = landmarks[17:32]
right_eye_brow = landmarks[43:51]
left_eye_brow = landmarks[97:105]
if right_eye_brow.size == 0 or left_eye_brow.size == 0 or right_side_face.size == 0 or left_side_face.size == 0 :
logging.warning("Face mask creation skipped due to empty landmark arrays for key features.")
if face.bbox is not None:
x1, y1, x2, y2 = face.bbox.astype(int)
cv2.rectangle(mask, (x1,y1), (x2,y2), 255, -1)
# Ensure kernel size is odd and positive for GaussianBlur
blur_kernel_size_face_fallback = (15,15)
if blur_kernel_size_face_fallback[0] % 2 == 0: blur_kernel_size_face_fallback = (blur_kernel_size_face_fallback[0]+1, blur_kernel_size_face_fallback[1])
if blur_kernel_size_face_fallback[1] % 2 == 0: blur_kernel_size_face_fallback = (blur_kernel_size_face_fallback[0], blur_kernel_size_face_fallback[1]+1)
if blur_kernel_size_face_fallback[0] <=0 : blur_kernel_size_face_fallback = (1, blur_kernel_size_face_fallback[1])
if blur_kernel_size_face_fallback[1] <=0 : blur_kernel_size_face_fallback = (blur_kernel_size_face_fallback[0], 1)
mask = cv2.GaussianBlur(mask, blur_kernel_size_face_fallback, 5)
return mask
right_eyebrow_top = np.min(right_eye_brow[:, 1])
left_eyebrow_top = np.min(left_eye_brow[:, 1])
eyebrow_top = min(right_eyebrow_top, left_eyebrow_top)
face_top = np.min([right_side_face[0, 1], left_side_face[-1, 1]])
forehead_height = max(0, face_top - eyebrow_top)
extended_forehead_height = int(forehead_height * 5.0)
forehead_left = right_side_face[0].copy()
forehead_right = left_side_face[-1].copy()
forehead_left[1] = max(0, forehead_left[1] - extended_forehead_height)
forehead_right[1] = max(0, forehead_right[1] - extended_forehead_height)
face_outline = np.vstack(
[
[forehead_left], right_side_face, left_side_face[::-1], [forehead_right],
]
)
if face_outline.shape[0] < 3 :
logging.warning("Not enough points for convex hull in face mask creation. Using bbox as fallback.")
if face.bbox is not None:
x1, y1, x2, y2 = face.bbox.astype(int)
cv2.rectangle(mask, (x1,y1), (x2,y2), 255, -1)
# Ensure kernel size is odd and positive for GaussianBlur
blur_kernel_size_face_hull_fallback = (15,15)
if blur_kernel_size_face_hull_fallback[0] % 2 == 0: blur_kernel_size_face_hull_fallback = (blur_kernel_size_face_hull_fallback[0]+1, blur_kernel_size_face_hull_fallback[1])
if blur_kernel_size_face_hull_fallback[1] % 2 == 0: blur_kernel_size_face_hull_fallback = (blur_kernel_size_face_hull_fallback[0], blur_kernel_size_face_hull_fallback[1]+1)
if blur_kernel_size_face_hull_fallback[0] <=0 : blur_kernel_size_face_hull_fallback = (1, blur_kernel_size_face_hull_fallback[1])
if blur_kernel_size_face_hull_fallback[1] <=0 : blur_kernel_size_face_hull_fallback = (blur_kernel_size_face_hull_fallback[0], 1)
mask = cv2.GaussianBlur(mask, blur_kernel_size_face_hull_fallback, 5)
return mask
padding = int(np.linalg.norm(right_side_face[0] - left_side_face[-1]) * 0.05)
hull = cv2.convexHull(face_outline)
hull_padded = []
center_of_outline = np.mean(face_outline, axis=0).squeeze()
if center_of_outline.ndim > 1:
center_of_outline = np.mean(center_of_outline, axis=0) # Ensure center_of_outline is 1D
for point_contour in hull:
point = point_contour[0]
direction = point - center_of_outline
norm_direction = np.linalg.norm(direction)
if norm_direction == 0: unit_direction = np.array([0,0], dtype=float) # Ensure float for multiplication
else: unit_direction = direction / norm_direction
padded_point = point + unit_direction * padding
hull_padded.append(padded_point)
if hull_padded:
hull_padded_np = np.array(hull_padded, dtype=np.int32)
# cv2.fillConvexPoly expects a 2D array for points, or 3D with shape (N,1,2)
if hull_padded_np.ndim == 3 and hull_padded_np.shape[1] == 1: # Already (N,1,2)
cv2.fillConvexPoly(mask, hull_padded_np, 255)
elif hull_padded_np.ndim == 2: # Shape (N,2)
cv2.fillConvexPoly(mask, hull_padded_np[:, np.newaxis, :], 255) # Reshape to (N,1,2)
else: # Fallback if shape is unexpected
logging.warning("Unexpected shape for hull_padded in create_face_mask. Using raw hull.")
if hull.ndim == 2: hull = hull[:,np.newaxis,:] # Ensure hull is (N,1,2)
cv2.fillConvexPoly(mask, hull, 255)
else:
# Fallback to raw hull if hull_padded is empty for some reason
if hull.ndim == 2: hull = hull[:,np.newaxis,:] # Ensure hull is (N,1,2)
cv2.fillConvexPoly(mask, hull, 255)
# Ensure kernel size is odd and positive for GaussianBlur
blur_kernel_size_face_final = (5,5)
if blur_kernel_size_face_final[0] % 2 == 0: blur_kernel_size_face_final = (blur_kernel_size_face_final[0]+1, blur_kernel_size_face_final[1])
if blur_kernel_size_face_final[1] % 2 == 0: blur_kernel_size_face_final = (blur_kernel_size_face_final[0], blur_kernel_size_face_final[1]+1)
if blur_kernel_size_face_final[0] <=0 : blur_kernel_size_face_final = (1, blur_kernel_size_face_final[1])
if blur_kernel_size_face_final[1] <=0 : blur_kernel_size_face_final = (blur_kernel_size_face_final[0], 1)
mask = cv2.GaussianBlur(mask, blur_kernel_size_face_final, 3)
return mask
def apply_color_transfer(source, target):
# Ensure inputs are not empty
if source is None or source.size == 0 or target is None or target.size == 0:
logging.warning("Color transfer skipped due to empty source or target image.")
return source # Or target, depending on desired behavior for empty inputs
try:
source_lab = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype("float32")
target_lab = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype("float32")
source_mean, source_std = cv2.meanStdDev(source_lab)
target_mean, target_std = cv2.meanStdDev(target_lab)
source_mean = source_mean.reshape((1, 1, 3))
source_std = source_std.reshape((1, 1, 3))
target_mean = target_mean.reshape((1, 1, 3))
target_std = target_std.reshape((1, 1, 3))
# Avoid division by zero if source_std is zero
source_std[source_std == 0] = 1e-6 # A small epsilon instead of 1 to avoid large scaling if target_std is also small
adjusted_lab = (source_lab - source_mean) * (target_std / source_std) + target_mean
adjusted_lab = np.clip(adjusted_lab, 0, 255) # Clip values to be within valid range for LAB
result_bgr = cv2.cvtColor(adjusted_lab.astype("uint8"), cv2.COLOR_LAB2BGR)
except cv2.error as e:
logging.error(f"OpenCV error in apply_color_transfer: {e}", exc_info=True)
return source # Return original source on error
except Exception as e:
logging.error(f"Unexpected error in apply_color_transfer: {e}", exc_info=True)
return source # Return original source on error
return result_bgr