131 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			131 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
from typing import Any, List
 | 
						|
import cv2
 | 
						|
import threading
 | 
						|
import gfpgan
 | 
						|
import os
 | 
						|
 | 
						|
import modules.globals
 | 
						|
import modules.processors.frame.core
 | 
						|
from modules.core import update_status
 | 
						|
from modules.face_analyser import get_one_face
 | 
						|
from modules.typing import Frame, Face
 | 
						|
import platform
 | 
						|
import torch
 | 
						|
from modules.utilities import (
 | 
						|
    conditional_download,
 | 
						|
    is_image,
 | 
						|
    is_video,
 | 
						|
)
 | 
						|
 | 
						|
FACE_ENHANCER = None
 | 
						|
THREAD_SEMAPHORE = threading.Semaphore()
 | 
						|
THREAD_LOCK = threading.Lock()
 | 
						|
NAME = "DLC.FACE-ENHANCER"
 | 
						|
 | 
						|
abs_dir = os.path.dirname(os.path.abspath(__file__))
 | 
						|
models_dir = os.path.join(
 | 
						|
    os.path.dirname(os.path.dirname(os.path.dirname(abs_dir))), "models"
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
def pre_check() -> bool:
 | 
						|
    download_directory_path = models_dir
 | 
						|
    conditional_download(
 | 
						|
        download_directory_path,
 | 
						|
        [
 | 
						|
            "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/GFPGANv1.4.pth"
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    return True
 | 
						|
 | 
						|
 | 
						|
def pre_start() -> bool:
 | 
						|
    if not is_image(modules.globals.target_path) and not is_video(
 | 
						|
        modules.globals.target_path
 | 
						|
    ):
 | 
						|
        update_status("Select an image or video for target path.", NAME)
 | 
						|
        return False
 | 
						|
    return True
 | 
						|
 | 
						|
 | 
						|
TENSORRT_AVAILABLE = False
 | 
						|
try:
 | 
						|
    import torch_tensorrt
 | 
						|
    TENSORRT_AVAILABLE = True
 | 
						|
except ImportError as im:
 | 
						|
    print(f"TensorRT is not available: {im}")
 | 
						|
    pass
 | 
						|
except Exception as e:
 | 
						|
    print(f"TensorRT is not available: {e}")
 | 
						|
    pass
 | 
						|
 | 
						|
def get_face_enhancer() -> Any:
 | 
						|
    global FACE_ENHANCER
 | 
						|
 | 
						|
    with THREAD_LOCK:
 | 
						|
        if FACE_ENHANCER is None:
 | 
						|
            model_path = os.path.join(models_dir, "GFPGANv1.4.pth")
 | 
						|
            
 | 
						|
            selected_device = None
 | 
						|
            device_priority = []
 | 
						|
 | 
						|
            if TENSORRT_AVAILABLE and torch.cuda.is_available():
 | 
						|
                selected_device = torch.device("cuda")
 | 
						|
                device_priority.append("TensorRT+CUDA")
 | 
						|
            elif torch.cuda.is_available():
 | 
						|
                selected_device = torch.device("cuda")
 | 
						|
                device_priority.append("CUDA")
 | 
						|
            elif torch.backends.mps.is_available() and platform.system() == "Darwin":
 | 
						|
                selected_device = torch.device("mps")
 | 
						|
                device_priority.append("MPS")
 | 
						|
            elif not torch.cuda.is_available():
 | 
						|
                selected_device = torch.device("cpu")
 | 
						|
                device_priority.append("CPU")
 | 
						|
            
 | 
						|
            FACE_ENHANCER = gfpgan.GFPGANer(model_path=model_path, upscale=1, device=selected_device)
 | 
						|
 | 
						|
            # for debug:
 | 
						|
            print(f"Selected device: {selected_device} and device priority: {device_priority}")
 | 
						|
    return FACE_ENHANCER
 | 
						|
 | 
						|
 | 
						|
def enhance_face(temp_frame: Frame) -> Frame:
 | 
						|
    with THREAD_SEMAPHORE:
 | 
						|
        _, _, temp_frame = get_face_enhancer().enhance(temp_frame, paste_back=True)
 | 
						|
    return temp_frame
 | 
						|
 | 
						|
 | 
						|
def process_frame(source_face: Face, temp_frame: Frame) -> Frame:
 | 
						|
    target_face = get_one_face(temp_frame)
 | 
						|
    if target_face:
 | 
						|
        temp_frame = enhance_face(temp_frame)
 | 
						|
    return temp_frame
 | 
						|
 | 
						|
 | 
						|
def process_frames(
 | 
						|
    source_path: str, temp_frame_paths: List[str], progress: Any = None
 | 
						|
) -> None:
 | 
						|
    for temp_frame_path in temp_frame_paths:
 | 
						|
        temp_frame = cv2.imread(temp_frame_path)
 | 
						|
        result = process_frame(None, temp_frame)
 | 
						|
        cv2.imwrite(temp_frame_path, result)
 | 
						|
        if progress:
 | 
						|
            progress.update(1)
 | 
						|
 | 
						|
 | 
						|
def process_image(source_path: str, target_path: str, output_path: str) -> None:
 | 
						|
    target_frame = cv2.imread(target_path)
 | 
						|
    result = process_frame(None, target_frame)
 | 
						|
    cv2.imwrite(output_path, result)
 | 
						|
 | 
						|
 | 
						|
def process_video(source_path: str, temp_frame_paths: List[str]) -> None:
 | 
						|
    modules.processors.frame.core.process_video(None, temp_frame_paths, process_frames)
 | 
						|
 | 
						|
 | 
						|
def process_frame_v2(temp_frame: Frame) -> Frame:
 | 
						|
    target_face = get_one_face(temp_frame)
 | 
						|
    if target_face:
 | 
						|
        temp_frame = enhance_face(temp_frame)
 | 
						|
    return temp_frame
 |