Deep-Live-Cam/modules/core.py

1054 lines
56 KiB
Python

# --- START OF FILE core.py ---
import os
import sys
# single thread doubles cuda performance - needs to be set before torch import
if any(arg.startswith('--execution-provider') for arg in sys.argv) and ('cuda' in sys.argv or 'rocm' in sys.argv):
# Apply for CUDA or ROCm if explicitly mentioned
os.environ['OMP_NUM_THREADS'] = '1'
# reduce tensorflow log level
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import warnings
from typing import List, Optional, Dict, Any # Added Dict, Any
import platform
import signal
import shutil
import argparse
import gc # Garbage Collector
import time # For timing performance
# Conditional PyTorch import for memory management
_torch_available = False
_torch_cuda_available = False
try:
import torch
_torch_available = True
if torch.cuda.is_available():
_torch_cuda_available = True
except ImportError:
# No warning needed unless CUDA is explicitly selected later
pass
import onnxruntime
import tensorflow
import cv2 # OpenCV is crucial here
import numpy as np # For frame manipulation
import modules.globals
import modules.metadata
import modules.ui as ui
from modules.processors.frame.core import get_frame_processors_modules, load_frame_processor_module # Added load_frame_processor_module
from modules.utilities import has_image_extension, is_image, is_video, detect_fps, create_video, extract_frames, get_temp_frame_paths, restore_audio, create_temp, move_temp, clean_temp, normalize_output_path
# Import necessary typing
from modules.typing import Frame
# Configuration for GPU Memory Limit (adjust as needed, e.g., 0.7-0.9)
GPU_MEMORY_LIMIT_FRACTION = 0.8 # Keep as default, user might adjust based on VRAM
# Global to hold active processor instances
FRAME_PROCESSORS_INSTANCES: List[Any] = []
# --- Argument Parsing and Setup (Mostly unchanged, but refined) ---
def parse_args() -> argparse.ArgumentParser: # Return parser for help message on error
signal.signal(signal.SIGINT, lambda signal_number, frame: destroy())
program = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=100, width=120)) # Improved formatter
program.add_argument('-s', '--source', help='Select source image(s) or directory', dest='source_path', nargs='+') # Allow multiple sources
program.add_argument('-t', '--target', help='Select target image or video', dest='target_path')
program.add_argument('-o', '--output', help='Select output file or directory', dest='output_path')
# Frame Processors: Add all available processors to choices dynamically later if possible
available_processors = [proc.NAME for proc in get_frame_processors_modules([])] # Get names dynamically
program.add_argument('--frame-processor', help='Pipeline of frame processors', dest='frame_processor', default=['face_swapper'], choices=available_processors, nargs='+')
program.add_argument('--keep-fps', help='Keep original video fps', dest='keep_fps', action='store_true')
program.add_argument('--keep-audio', help='Keep original video audio (requires --keep-fps for sync)', dest='keep_audio', action='store_true', default=True) # Keep True default
program.add_argument('--keep-frames', help='Keep temporary frames after processing', dest='keep_frames', action='store_true')
program.add_argument('--many-faces', help='Process all detected faces (specific processor behavior)', dest='many_faces', action='store_true')
program.add_argument('--nsfw-filter', help='Enable NSFW prediction and skip if detected', dest='nsfw_filter', action='store_true')
program.add_argument('--map-faces', help='Enable face mapping for video (requires target analysis)', dest='map_faces', action='store_true')
program.add_argument('--color-correction', help='Enable color correction (specific processor behavior)', dest='color_correction', action='store_true') # Add color correction flag
# Mouth mask is processor specific, maybe handled internally or via processor options? Keep it for now.
program.add_argument('--mouth-mask', help='Enable mouth masking (specific processor behavior)', dest='mouth_mask', action='store_true')
program.add_argument('--video-encoder', help='Output video encoder', dest='video_encoder', default='libx264', choices=['libx264', 'libx265', 'libvpx-vp9', 'h264_nvenc', 'hevc_nvenc']) # Added NVIDIA HW encoders
program.add_argument('--video-quality', help='Output video quality crf/qp (0-51 for sw, 0-? for hw, lower=better)', dest='video_quality', type=int, default=18) # Adjusted help text
program.add_argument('-l', '--lang', help='UI language', default="en", choices=["en", "de", "es", "fr", "it", "pt", "ru", "zh"]) # Example languages
program.add_argument('--live-mirror', help='Mirror live camera feed', dest='live_mirror', action='store_true')
program.add_argument('--live-resizable', help='Make live camera window resizable', dest='live_resizable', action='store_true')
program.add_argument('--max-memory', help='DEPRECATED: Use GPU memory fraction. Max CPU RAM limit (GB).', dest='max_memory', type=int) # Default removed, handled dynamically
program.add_argument('--execution-provider', help='Execution provider(s) (cpu, cuda, rocm, dml, coreml)', dest='execution_provider', default=suggest_execution_providers(), nargs='+') # Use suggested default
program.add_argument('--execution-threads', help='Number of threads for execution provider', dest='execution_threads', type=int, default=suggest_execution_threads()) # Use suggested default
program.add_argument('-v', '--version', action='version', version=f'{modules.metadata.name} {modules.metadata.version}')
# register deprecated args
program.add_argument('-f', '--face', help=argparse.SUPPRESS, dest='source_path_deprecated')
program.add_argument('--cpu-cores', help=argparse.SUPPRESS, dest='cpu_cores_deprecated', type=int)
program.add_argument('--gpu-vendor', help=argparse.SUPPRESS, dest='gpu_vendor_deprecated')
program.add_argument('--gpu-threads', help=argparse.SUPPRESS, dest='gpu_threads_deprecated', type=int)
args = program.parse_args()
# Check for ROCm selection early for PyTorch unloading
_is_rocm_selected = any('rocm' in ep.lower() for ep in args.execution_provider)
global _torch_available, _torch_cuda_available
if _is_rocm_selected and _torch_available:
print("[DLC.CORE] ROCm selected, unloading PyTorch.")
del torch
_torch_available = False
_torch_cuda_available = False
gc.collect()
handle_deprecated_args(args) # Handle deprecated args after initial parsing
# Assign to globals
# Use the first source if multiple provided for single-source contexts, processors might handle multiple sources.
modules.globals.source_path = args.source_path[0] if isinstance(args.source_path, list) else args.source_path
# Store all sources if needed by processors
modules.globals.source_paths = args.source_path if isinstance(args.source_path, list) else [args.source_path]
modules.globals.target_path = args.target_path
modules.globals.output_path = normalize_output_path(modules.globals.source_path, modules.globals.target_path, args.output_path)
# Frame Processors: Store names, instances will be created later
modules.globals.frame_processors = args.frame_processor
modules.globals.headless = bool(args.source_path or args.target_path or args.output_path)
modules.globals.keep_fps = args.keep_fps
modules.globals.keep_audio = args.keep_audio
modules.globals.keep_frames = args.keep_frames
modules.globals.many_faces = args.many_faces
modules.globals.mouth_mask = args.mouth_mask # Pass to processors if they use it
modules.globals.color_correction = args.color_correction # Pass to processors
modules.globals.nsfw_filter = args.nsfw_filter
modules.globals.map_faces = args.map_faces
modules.globals.video_encoder = args.video_encoder
modules.globals.video_quality = args.video_quality
modules.globals.live_mirror = args.live_mirror
modules.globals.live_resizable = args.live_resizable
# Set max_memory, use suggested if not provided by user
modules.globals.max_memory = args.max_memory if args.max_memory is not None else suggest_max_memory()
# Decode and validate execution providers
modules.globals.execution_providers = decode_execution_providers(args.execution_provider)
# Set execution threads, ensure it's positive
modules.globals.execution_threads = max(1, args.execution_threads)
modules.globals.lang = args.lang
# Update derived globals for UI state etc.
modules.globals.fp_ui['face_enhancer'] = 'face_enhancer' in modules.globals.frame_processors
modules.globals.fp_ui['face_swapper'] = 'face_swapper' in modules.globals.frame_processors # Example
# Add other processors as needed
# Final checks and warnings
if modules.globals.keep_audio and not modules.globals.keep_fps:
print("\033[33mWarning: --keep-audio is enabled without --keep-fps. This may cause audio/video sync issues.\033[0m")
if 'cuda' in modules.globals.execution_providers and not _torch_cuda_available:
# Warning if CUDA provider selected but PyTorch CUDA not functional (for memory limiting)
print("\033[33mWarning: CUDA provider selected, but torch.cuda.is_available() is False. PyTorch GPU memory limiting disabled.\033[0m")
if ('h264_nvenc' in modules.globals.video_encoder or 'hevc_nvenc' in modules.globals.video_encoder) and 'cuda' not in modules.globals.execution_providers:
# Check if ffmpeg build supports nvenc if needed
print(f"\033[33mWarning: NVENC encoder ({modules.globals.video_encoder}) selected, but 'cuda' is not in execution providers. Ensure ffmpeg has NVENC support and drivers are installed.\033[0m")
# Set ONNX Runtime logging level (0:Verbose, 1:Info, 2:Warning, 3:Error, 4:Fatal)
try:
onnxruntime.set_default_logger_severity(3) # Set to Error level to reduce verbose logs
except AttributeError:
print("\033[33mWarning: Could not set ONNX Runtime logger severity (might be an older version).\033[0m")
return program # Return parser
def handle_deprecated_args(args: argparse.Namespace) -> None:
"""Handles deprecated arguments and updates corresponding new arguments if necessary."""
# Source path
if args.source_path_deprecated:
print('\033[33mWarning: Argument -f/--face is deprecated. Use -s/--source instead.\033[0m')
if not args.source_path:
# Convert to list to match potential nargs='+'
args.source_path = [args.source_path_deprecated]
# Execution Threads
if args.cpu_cores_deprecated is not None:
print('\033[33mWarning: Argument --cpu-cores is deprecated. Use --execution-threads instead.\033[0m')
# Only override if execution_threads wasn't explicitly set *and* cpu_cores was used
if args.execution_threads == suggest_execution_threads(): # Check against default suggestion
args.execution_threads = args.cpu_cores_deprecated
if args.gpu_threads_deprecated is not None:
print('\033[33mWarning: Argument --gpu-threads is deprecated. Use --execution-threads instead.\033[0m')
# Override if gpu_threads was used, potentially overriding cpu_cores value if both were used
# Check if execution_threads is still at default OR was set by cpu_cores_deprecated
if args.execution_threads == suggest_execution_threads() or \
(args.cpu_cores_deprecated is not None and args.execution_threads == args.cpu_cores_deprecated):
args.execution_threads = args.gpu_threads_deprecated
# Execution Provider from gpu_vendor
if args.gpu_vendor_deprecated:
# Only override if execution_provider is still the default suggested list
suggested_providers_default = suggest_execution_providers()
is_default_provider = sorted(args.execution_provider) == sorted(suggested_providers_default)
if is_default_provider:
provider_map = {
'apple': ['coreml', 'cpu'],
'nvidia': ['cuda', 'cpu'],
'amd': ['rocm', 'cpu'],
'intel': ['dml', 'cpu'] # Example for DirectML on Intel
}
vendor = args.gpu_vendor_deprecated.lower()
if vendor in provider_map:
print(f'\033[33mWarning: Argument --gpu-vendor {args.gpu_vendor_deprecated} is deprecated. Setting --execution-provider to {provider_map[vendor]}.\033[0m')
args.execution_provider = provider_map[vendor]
else:
print(f'\033[33mWarning: Unknown --gpu-vendor {args.gpu_vendor_deprecated}. Default execution providers kept.\033[0m')
else:
# User explicitly set execution providers, ignore deprecated vendor
print(f'\033[33mWarning: --gpu-vendor {args.gpu_vendor_deprecated} is deprecated and ignored because --execution-provider was explicitly set to {args.execution_provider}.\033[0m')
def encode_execution_providers(execution_providers: List[str]) -> List[str]:
"""Converts ONNX Runtime provider names to lowercase short names."""
return [ep.replace('ExecutionProvider', '').lower() for ep in execution_providers]
def decode_execution_providers(execution_providers_names: List[str]) -> List[str]:
"""Converts lowercase short names back to full ONNX Runtime provider names, preserving order and ensuring availability."""
available_providers_full = onnxruntime.get_available_providers() # e.g., ['CUDAExecutionProvider', 'CPUExecutionProvider']
available_providers_encoded = encode_execution_providers(available_providers_full) # e.g., ['cuda', 'cpu']
decoded_providers = []
requested_providers_lower = [name.lower() for name in execution_providers_names]
# User's requested providers first, if available
for req_name_lower in requested_providers_lower:
try:
idx = available_providers_encoded.index(req_name_lower)
provider_full_name = available_providers_full[idx]
if provider_full_name not in decoded_providers: # Avoid duplicates
decoded_providers.append(provider_full_name)
except ValueError:
print(f"\033[33mWarning: Requested execution provider '{req_name_lower}' is not available or not recognized by ONNX Runtime.\033[0m")
# Ensure CPU is present if no other providers were valid or if it wasn't requested but is available
cpu_provider_full = 'CPUExecutionProvider'
if not decoded_providers or cpu_provider_full not in decoded_providers:
if cpu_provider_full in available_providers_full:
if cpu_provider_full not in decoded_providers: # Add CPU if missing
decoded_providers.append(cpu_provider_full)
print(f"[DLC.CORE] Ensuring '{cpu_provider_full}' is included as a fallback.")
else:
# This is critical - OR needs at least one provider
print(f"\033[31mFatal Error: No valid execution providers found, and '{cpu_provider_full}' is not available in this ONNX Runtime build!\033[0m")
sys.exit(1)
# Filter list based on actual availability reported by ORT (double check)
final_providers = [p for p in decoded_providers if p in available_providers_full]
if len(final_providers) != len(decoded_providers):
removed = set(decoded_providers) - set(final_providers)
print(f"\033[33mWarning: Providers {list(removed)} were removed after final availability check.\033[0m")
if not final_providers:
print(f"\033[31mFatal Error: No available execution providers could be configured. Available: {available_providers_full}\033[0m")
sys.exit(1)
print(f"[DLC.CORE] Using execution providers: {final_providers}")
return final_providers
def suggest_max_memory() -> int:
"""Suggests a default max CPU RAM limit in GB based on available memory (heuristic)."""
try:
import psutil
total_memory_gb = psutil.virtual_memory().total / (1024 ** 3)
# Suggest using roughly 50% of total RAM, capped at a reasonable upper limit (e.g., 64GB)
# and a lower limit (e.g., 4GB)
suggested_gb = max(4, min(int(total_memory_gb * 0.5), 64))
# print(f"[DLC.CORE] Suggested max CPU memory (heuristic): {suggested_gb} GB")
return suggested_gb
except ImportError:
print("\033[33mWarning: 'psutil' module not found. Cannot suggest dynamic max_memory. Using default (16GB).\033[0m")
# Fallback to a static default if psutil is not available
return 16
except Exception as e:
print(f"\033[33mWarning: Error getting system memory: {e}. Using default max_memory (16GB).\033[0m")
return 16
def suggest_execution_providers() -> List[str]:
"""Suggests available execution providers as short names, prioritizing GPU if available."""
available_providers_full = onnxruntime.get_available_providers()
available_providers_encoded = encode_execution_providers(available_providers_full)
# Prioritize GPU providers
provider_priority = ['cuda', 'rocm', 'dml', 'coreml', 'cpu']
suggested = []
for provider in provider_priority:
if provider in available_providers_encoded:
suggested.append(provider)
# Ensure CPU is always included as a fallback
if 'cpu' not in suggested and 'cpu' in available_providers_encoded:
suggested.append('cpu')
# If only CPU is available, return that
if not suggested and 'cpu' in available_providers_encoded:
return ['cpu']
elif not suggested:
# Should not happen if ORT is installed correctly
print("\033[31mError: No execution providers detected, including CPU!\033[0m")
return ['cpu'] # Still return cpu as a placeholder
return suggested
def suggest_execution_threads() -> int:
"""Suggests a sensible default number of execution threads based on logical CPU cores."""
try:
logical_cores = os.cpu_count()
if logical_cores:
# Heuristic: Use most cores, but leave some for OS/other tasks. Cap reasonably.
# For systems with many cores (>16), maybe don't use all of them by default.
threads = max(1, min(logical_cores - 2, 16)) if logical_cores > 4 else max(1, logical_cores - 1)
return threads
except NotImplementedError:
pass # Fallback if os.cpu_count() fails
except Exception as e:
print(f"\033[33mWarning: Error getting CPU count: {e}. Using default threads (4).\033[0m")
# Default fallback
return 4
def limit_gpu_memory(fraction: float) -> None:
"""Attempts to limit GPU memory usage via PyTorch (for CUDA) or TensorFlow."""
gpu_limited = False
# 1. PyTorch (CUDA) Limit - Only if PyTorch CUDA is available
if 'CUDAExecutionProvider' in modules.globals.execution_providers and _torch_cuda_available:
try:
# Ensure fraction is within valid range [0.0, 1.0]
safe_fraction = max(0.1, min(1.0, fraction)) # Prevent setting 0%
print(f"[DLC.CORE] Attempting to limit PyTorch CUDA memory fraction to {safe_fraction:.1%}")
torch.cuda.set_per_process_memory_fraction(safe_fraction, 0) # Limit on default device (0)
print(f"[DLC.CORE] PyTorch CUDA memory fraction limit set.")
gpu_limited = True
# Optional: Check memory post-limit (can be verbose)
# total_mem = torch.cuda.get_device_properties(0).total_memory
# reserved_mem = torch.cuda.memory_reserved(0)
# allocated_mem = torch.cuda.memory_allocated(0)
# print(f"[DLC.CORE] CUDA Device 0: Total={total_mem/1024**3:.2f}GB, Reserved={reserved_mem/1024**3:.2f}GB, Allocated={allocated_mem/1024**3:.2f}GB")
except RuntimeError as e:
print(f"\033[33mWarning: Failed to set PyTorch CUDA memory fraction (may already be initialized?): {e}\033[0m")
except Exception as e:
print(f"\033[33mWarning: An unexpected error occurred setting PyTorch CUDA memory fraction: {e}\033[0m")
# 2. TensorFlow GPU Limit (Memory Growth) - Less direct limit, but essential
try:
gpus = tensorflow.config.experimental.list_physical_devices('GPU')
if gpus:
for gpu in gpus:
try:
tensorflow.config.experimental.set_memory_growth(gpu, True)
print(f"[DLC.CORE] Enabled TensorFlow memory growth for GPU: {gpu.name}")
gpu_limited = True # Considered a form of GPU resource management
except RuntimeError as e:
# Memory growth must be set before GPUs have been initialized
print(f"\033[33mWarning: Could not set TensorFlow memory growth for {gpu.name} (may already be initialized?): {e}\033[0m")
except Exception as e:
print(f"\033[33mWarning: An unexpected error occurred setting TensorFlow memory growth for {gpu.name}: {e}\033[0m")
# else:
# No TF GPUs detected, which is fine if not using TF-based models directly
# print("[DLC.CORE] No TensorFlow physical GPUs detected.")
except Exception as e:
print(f"\033[33mWarning: Error configuring TensorFlow GPU settings: {e}\033[0m")
# if not gpu_limited:
# print("[DLC.CORE] No GPU memory limits applied (GPU provider not used, or libraries unavailable/failed).")
def limit_resources() -> None:
"""Limits system resources like CPU RAM (best effort) and configures TF."""
# 1. Limit CPU RAM (Best effort, platform dependent)
if modules.globals.max_memory and modules.globals.max_memory > 0:
limit_gb = modules.globals.max_memory
limit_bytes = limit_gb * (1024 ** 3)
try:
if platform.system().lower() in ['linux', 'darwin']:
import resource
# RLIMIT_AS limits virtual memory size (includes RAM, swap, mappings)
# Set both soft and hard limits
resource.setrlimit(resource.RLIMIT_AS, (limit_bytes, limit_bytes))
print(f"[DLC.CORE] Limited process virtual memory (CPU RAM approximation) to ~{limit_gb} GB.")
elif platform.system().lower() == 'windows':
# Windows limiting is harder; SetProcessWorkingSetSizeEx is more of a hint
# Using Job Objects is the robust way but complex to implement here
import ctypes
kernel32 = ctypes.windll.kernel32
handle = kernel32.GetCurrentProcess()
# Try setting min and max working set size
# Note: Requires specific privileges, might fail silently or with error code
# Use values slightly smaller than the limit for flexibility
min_ws = 1024 * 1024 # Set a small minimum (e.g., 1MB)
max_ws = limit_bytes
if not kernel32.SetProcessWorkingSetSizeEx(handle, ctypes.c_size_t(min_ws), ctypes.c_size_t(max_ws), ctypes.c_ulong(0x1)): # QUOTA_LIMITS_HARDWS_ENABLE = 0x1
last_error = ctypes.get_last_error()
# Common error: 1314 (ERROR_PRIVILEGE_NOT_HELD)
if last_error == 1314:
print(f"\033[33mWarning: Failed to set process working set size limit on Windows (Error {last_error}). Try running as Administrator if limits are needed.\033[0m")
else:
print(f"\033[33mWarning: Failed to set process working set size limit on Windows (Error {last_error}).\033[0m")
else:
print(f"[DLC.CORE] Requested process working set size limit (Windows memory hint) max ~{limit_gb} GB.")
else:
print(f"\033[33mWarning: CPU RAM limiting not implemented for platform {platform.system()}. --max-memory ignored.\033[0m")
except ImportError:
print(f"\033[33mWarning: 'resource' module (Linux/macOS) or 'ctypes' (Windows) not available. Cannot limit CPU RAM.\033[0m")
except Exception as e:
print(f"\033[33mWarning: Failed to limit CPU RAM: {e}\033[0m")
# else:
# print("[DLC.CORE] CPU RAM limit (--max-memory) not set.")
# 2. Configure TensorFlow GPU memory growth (already done in limit_gpu_memory, but safe to call again)
# This ensures it's attempted even if limit_gpu_memory wasn't fully effective.
try:
gpus = tensorflow.config.experimental.list_physical_devices('GPU')
if gpus:
for gpu in gpus:
try:
if not tensorflow.config.experimental.get_memory_growth(gpu):
tensorflow.config.experimental.set_memory_growth(gpu, True)
# print(f"[DLC.CORE] Re-checked TF memory growth for {gpu.name}: Enabled.") # Avoid redundant logs
except RuntimeError:
pass # Ignore if already initialized error
except Exception:
pass # Ignore errors here, primary attempt was in limit_gpu_memory
def release_resources() -> None:
"""Releases resources, especially GPU memory caches, and runs garbage collection."""
# 1. Clear PyTorch CUDA cache (if applicable and available)
if _torch_cuda_available: # Check if torch+cuda is loaded
try:
torch.cuda.empty_cache()
# print("[DLC.CORE] Cleared PyTorch CUDA cache.") # Can be verbose
except Exception as e:
print(f"\033[33mWarning: Failed to clear PyTorch CUDA cache: {e}\033[0m")
# 2. Potentially clear TensorFlow session / clear Keras backend session (less common need)
# try:
# from tensorflow.keras import backend as K
# K.clear_session()
# print("[DLC.CORE] Cleared Keras backend session.")
# except ImportError:
# pass # Keras might not be installed or used
# except Exception as e:
# print(f"\033[33mWarning: Failed to clear Keras session: {e}\033[0m")
# 3. Explicitly run garbage collection (important!)
gc.collect()
# print("[DLC.CORE] Ran garbage collection.") # Can be verbose
def pre_check() -> bool:
"""Performs essential pre-run checks for dependencies, versions, and paths."""
update_status('Performing pre-flight checks...')
checks_passed = True
# Python version
if sys.version_info < (3, 9):
update_status('Error: Python 3.9 or higher is required.', 'ERROR')
checks_passed = False
# FFmpeg
if not shutil.which('ffmpeg'):
update_status('Error: ffmpeg command was not found in your system PATH. Please install ffmpeg.', 'ERROR')
checks_passed = False
# ONNX Runtime
try:
ort_version = onnxruntime.__version__
update_status(f'ONNX Runtime version: {ort_version}')
except Exception as e:
update_status(f'Error: Failed to import or access ONNX Runtime: {e}', 'ERROR')
checks_passed = False
# TensorFlow (optional, but good to check)
try:
tf_version = tensorflow.__version__
update_status(f'TensorFlow version: {tf_version}')
except Exception as e:
update_status(f'Warning: Could not import or access TensorFlow: {e}', 'WARN')
# Decide if TF absence is critical based on potential processors
# checks_passed = False
# PyTorch (only if CUDA is selected for memory limiting)
if 'CUDAExecutionProvider' in modules.globals.execution_providers:
if not _torch_available:
update_status('Warning: CUDA provider selected, but PyTorch is not installed. GPU memory limiting via PyTorch is disabled.', 'WARN')
elif not _torch_cuda_available:
update_status('Warning: PyTorch installed, but torch.cuda.is_available() is False. Check PyTorch CUDA installation and drivers. GPU memory limiting via PyTorch is disabled.', 'WARN')
else:
update_status(f'PyTorch version: {torch.__version__} (CUDA available for memory limiting)')
# Check source/target paths if in headless mode
if modules.globals.headless:
if not modules.globals.source_path:
update_status("Error: Source path ('-s' or '--source') is required in headless mode.", 'ERROR')
checks_passed = False
# Check if source files exist
elif isinstance(modules.globals.source_paths, list):
for spath in modules.globals.source_paths:
if not os.path.exists(spath):
update_status(f"Error: Source file/directory not found: {spath}", 'ERROR')
checks_passed = False
elif not os.path.exists(modules.globals.source_path):
update_status(f"Error: Source file/directory not found: {modules.globals.source_path}", 'ERROR')
checks_passed = False
if not modules.globals.target_path:
update_status("Error: Target path ('-t' or '--target') is required in headless mode.", 'ERROR')
checks_passed = False
elif not os.path.exists(modules.globals.target_path):
update_status(f"Error: Target file not found: {modules.globals.target_path}", 'ERROR')
checks_passed = False
if not modules.globals.output_path:
update_status("Error: Output path ('-o' or '--output') could not be determined or is missing.", 'ERROR')
checks_passed = False
update_status('Pre-flight checks completed.')
return checks_passed
def update_status(message: str, scope: str = 'DLC.CORE') -> None:
"""Prints status messages and updates UI if not headless."""
log_message = f'[{scope}] {message}'
print(log_message)
if not modules.globals.headless:
try:
# Check if ui module and function exist and are callable
if hasattr(ui, 'update_status') and callable(ui.update_status):
ui.update_status(message) # Pass original message to UI
except Exception as e:
print(f"[DLC.CORE] Error updating UI status: {e}")
# --- Main Processing Logic ---
def start() -> None:
"""Main processing logic for images and videos."""
start_time = time.time()
update_status(f'Processing started at {time.strftime("%Y-%m-%d %H:%M:%S")}')
# --- Load and Prepare Frame Processors ---
global FRAME_PROCESSORS_INSTANCES
FRAME_PROCESSORS_INSTANCES = [] # Clear previous instances if any
processors_ready = True
for processor_name in modules.globals.frame_processors:
update_status(f'Loading frame processor: {processor_name}...')
module = load_frame_processor_module(processor_name)
if module:
# Pass necessary global options to the processor's constructor or setup method if needed
# Example: instance = module.Processor(many_faces=modules.globals.many_faces, ...)
instance = module # Assuming module itself might have necessary functions
FRAME_PROCESSORS_INSTANCES.append(instance)
if not instance.pre_start(): # Call pre_start after loading
update_status(f'Initialization failed for {processor_name}. Aborting.', 'ERROR')
processors_ready = False
break # Stop loading further processors
else:
update_status(f'Could not load frame processor module: {processor_name}. Aborting.', 'ERROR')
processors_ready = False
break
if not processors_ready or not FRAME_PROCESSORS_INSTANCES:
update_status('Frame processor setup failed. Cannot start processing.', 'ERROR')
return
# Simplify face map for faster lookups if needed
if modules.globals.map_faces and ('face_swapper' in modules.globals.frame_processors): # Example condition
update_status("Simplifying face map for processing...", "Face Analyser")
from modules.face_analyser import simplify_maps # Import locally
simplify_maps()
# Verify map content after simplification (optional debug)
# if modules.globals.simple_map:
# print(f"[DEBUG] Simple map: {len(modules.globals.simple_map['source_faces'])} sources, {len(modules.globals.simple_map['target_embeddings'])} targets")
# else:
# print("[DEBUG] Simple map is empty.")
# --- Target is Image ---
if has_image_extension(modules.globals.target_path) and is_image(modules.globals.target_path):
process_image_to_image()
# --- Target is Video ---
elif is_video(modules.globals.target_path):
process_video()
# --- Invalid Target ---
else:
if modules.globals.target_path:
update_status(f"Target path '{modules.globals.target_path}' is not a recognized image or video file.", "ERROR")
else:
update_status("Target path not specified or invalid.", "ERROR")
# --- Processing Finished ---
end_time = time.time()
total_time = end_time - start_time
update_status(f'Processing finished in {total_time:.2f} seconds.')
def process_image_to_image():
"""Handles the image-to-image processing workflow."""
update_status('Processing image: {}'.format(os.path.basename(modules.globals.target_path)))
# --- NSFW Check ---
if modules.globals.nsfw_filter:
update_status("Checking target image for NSFW content...", "NSFW")
from modules.predicter import predict_image # Import locally
try:
is_nsfw = predict_image(modules.globals.target_path)
if is_nsfw:
update_status("NSFW content detected in target image. Skipping processing.", "NSFW")
if not modules.globals.headless:
ui.show_error("NSFW content detected. Processing skipped.", title="NSFW Detected")
# Consider deleting output placeholder if it exists? Risky.
# if os.path.exists(modules.globals.output_path): os.remove(modules.globals.output_path)
return # Stop processing
else:
update_status("NSFW check passed.", "NSFW")
except Exception as e:
update_status(f"Error during NSFW check for image: {e}. Continuing processing.", "NSFW")
# --- Process ---
try:
# Create output directory if needed
output_dir = os.path.dirname(modules.globals.output_path)
if output_dir and not os.path.exists(output_dir):
os.makedirs(output_dir, exist_ok=True)
print(f"[DLC.CORE] Created output directory: {output_dir}")
# Read target image using OpenCV (consistent with video frames)
target_frame: Frame = cv2.imread(modules.globals.target_path)
if target_frame is None:
update_status(f'Error: Could not read target image file: {modules.globals.target_path}', 'ERROR')
return
# --- Apply Processors Sequentially ---
processed_frame = target_frame.copy() # Start with a copy
for processor in FRAME_PROCESSORS_INSTANCES:
processor_name = getattr(processor, 'NAME', 'UnknownProcessor') # Get name safely
update_status(f'Applying {processor_name}...', processor_name)
try:
# Processors should accept a frame (numpy array) and return a processed frame
# Pass global options if needed by the process_frame method
start_proc_time = time.time()
# Pass source path(s) and the frame to be processed
processor_params = {
"source_paths": modules.globals.source_paths, # Pass list of source paths
"target_frame": processed_frame,
"many_faces": modules.globals.many_faces,
"color_correction": modules.globals.color_correction,
"mouth_mask": modules.globals.mouth_mask,
# Add other relevant globals if processors need them
}
# Filter params based on what the processor's process_frame expects (optional advanced)
processed_frame = processor.process_frame(processor_params)
if processed_frame is None:
update_status(f'Error: Processor {processor_name} returned None. Aborting processing for this image.', 'ERROR')
return # Stop processing this image
end_proc_time = time.time()
update_status(f'{processor_name} applied in {end_proc_time - start_proc_time:.2f} seconds.', processor_name)
release_resources() # Release memory after each processor
except Exception as e:
update_status(f'Error applying processor {processor_name}: {e}', 'ERROR')
import traceback
traceback.print_exc()
return # Stop processing on error
# --- Save Processed Image ---
update_status(f'Saving processed image to: {modules.globals.output_path}')
try:
# Use OpenCV to save the final frame
# Quality parameters can be added for formats like JPG
# Example: cv2.imwrite(modules.globals.output_path, processed_frame, [cv2.IMWRITE_JPEG_QUALITY, 95])
save_success = cv2.imwrite(modules.globals.output_path, processed_frame)
if not save_success:
update_status('Error: Failed to save the processed image.', 'ERROR')
elif os.path.exists(modules.globals.output_path) and is_image(modules.globals.output_path):
update_status('Image processing finished successfully.')
else:
update_status('Error: Output image file not found or invalid after saving.', 'ERROR')
except Exception as e:
update_status(f'Error saving processed image: {e}', 'ERROR')
except Exception as e:
update_status(f'An unexpected error occurred during image processing: {e}', 'ERROR')
import traceback
traceback.print_exc()
def process_video():
"""Handles the video processing workflow with optimized frame handling."""
update_status('Processing video: {}'.format(os.path.basename(modules.globals.target_path)))
# --- NSFW Check (Basic - Check first frame or predict_video) ---
if modules.globals.nsfw_filter:
update_status("Checking video for NSFW content (sampling)...", "NSFW")
from modules.predicter import predict_video # Import locally
try:
# Use the library's video prediction (may not use optimal providers)
# Or implement custom frame sampling here using predict_frame
is_nsfw = predict_video(modules.globals.target_path)
if is_nsfw:
update_status("NSFW content detected in video (based on sampling). Skipping processing.", "NSFW")
if not modules.globals.headless:
ui.show_error("NSFW content detected. Processing skipped.", title="NSFW Detected")
return # Stop processing
else:
update_status("NSFW check passed (based on sampling).", "NSFW")
except Exception as e:
update_status(f"Error during NSFW check for video: {e}. Continuing processing.", "NSFW")
# --- Prepare Temp Environment ---
temp_output_video_path = None # For intermediate video file
video_fps = 30.0 # Default FPS
try:
# Setup temp directory and frame extraction (if not mapping faces, which might pre-extract)
# If map_faces is enabled, face_analyser.get_unique_faces_from_target_video handles extraction.
if not modules.globals.map_faces:
update_status('Creating temporary resources...', 'Temp')
clean_temp(modules.globals.target_path) # Clean first
create_temp(modules.globals.target_path)
update_status('Extracting video frames...', 'FFmpeg')
extract_frames(modules.globals.target_path, modules.globals.keep_fps) # Pass keep_fps hint
update_status('Frame extraction complete.', 'FFmpeg')
# else: Handled by face mapper
# Get paths to frames (must exist either way)
temp_frame_paths = get_temp_frame_paths(modules.globals.target_path)
if not temp_frame_paths:
update_status('Error: No frames found to process. Check temp folder or extraction step.', 'ERROR')
destroy(to_quit=False) # Clean up temp
return
num_frames = len(temp_frame_paths)
update_status(f'Processing {num_frames} frames...')
# Determine Target FPS
if modules.globals.keep_fps:
update_status('Detecting target video FPS...', 'FFmpeg')
detected_fps = detect_fps(modules.globals.target_path)
if detected_fps:
video_fps = detected_fps
update_status(f'Using detected FPS: {video_fps:.2f}')
else:
update_status("Warning: Could not detect FPS, using default 30.", "WARN")
video_fps = 30.0 # Fallback fps
else:
video_fps = 30.0 # Use default fps if not keeping original
update_status(f'Using fixed FPS: {video_fps:.2f}')
modules.globals.video_fps = video_fps # Store globally if needed elsewhere
# --- OPTIMIZED Frame Processing Loop ---
update_status('Starting frame processing loop...')
# Use tqdm for progress bar
frame_iterator = tqdm(enumerate(temp_frame_paths), total=num_frames, desc="Processing Frames", unit="frame")
for frame_index, frame_path in frame_iterator:
try:
# 1. Read Frame
target_frame: Frame = cv2.imread(frame_path)
if target_frame is None:
update_status(f'Warning: Could not read frame {frame_path}. Skipping.', 'WARN')
continue
# Frame dimensions for potential checks later
# height, width = target_frame.shape[:2]
# 2. Apply Processors Sequentially to this Frame
processed_frame = target_frame # Start with the original frame for this iteration
for processor in FRAME_PROCESSORS_INSTANCES:
processor_name = getattr(processor, 'NAME', 'UnknownProcessor')
try:
# Pass necessary parameters to the processor's process_frame method
processor_params = {
"source_paths": modules.globals.source_paths,
"target_frame": processed_frame, # Pass the current state of the frame
"many_faces": modules.globals.many_faces,
"color_correction": modules.globals.color_correction,
"mouth_mask": modules.globals.mouth_mask,
"frame_index": frame_index, # Pass frame index if needed
"total_frames": num_frames, # Pass total frames if needed
# Pass simple_map if face mapping is active
"simple_map": modules.globals.simple_map if modules.globals.map_faces else None,
}
# Filter params or use **kwargs if processor accepts them
temp_frame = processor.process_frame(processor_params)
if temp_frame is None:
update_status(f'Warning: Processor {processor_name} returned None for frame {frame_index}. Using previous frame state.', 'WARN')
# Keep processed_frame as it was before this processor
else:
processed_frame = temp_frame # Update frame state for the next processor
# Optimization: Conditional resource release inside loop if memory is tight
# if frame_index % 50 == 0: release_resources()
except Exception as proc_e:
update_status(f'Error applying processor {processor_name} on frame {frame_index}: {proc_e}', 'ERROR')
# Option: Skip frame vs. Abort entirely
# For now, we continue processing the frame with subsequent processors, using the last valid state
pass # Continue with next processor on this frame
# 3. Write Processed Frame back to temp location (overwrite original temp frame)
# This ensures create_video reads the modified frames
save_success = cv2.imwrite(frame_path, processed_frame)
if not save_success:
update_status(f'Warning: Failed to save processed frame {frame_path}. Video might contain unprocessed frame.', 'WARN')
# 4. Release resources periodically (e.g., every N frames or based on time)
if frame_index % 25 == 0 or frame_index == num_frames - 1: # Release every 25 frames and on the last frame
release_resources()
except Exception as frame_e:
update_status(f'Error processing frame {frame_index} at path {frame_path}: {frame_e}', 'ERROR')
import traceback
traceback.print_exc()
# Option: Continue to next frame or abort? Continue for robustness.
update_status('Frame processing loop finished.')
# --- Create Video from Processed Frames ---
update_status('Creating video from processed frames...')
# Define temp output path before audio restoration
temp_output_dir = get_temp_directory_path(modules.globals.target_path) # Get base temp dir
if not temp_output_dir: temp_output_dir = os.path.dirname(modules.globals.output_path) # Fallback
temp_output_video_path = os.path.join(temp_output_dir, f"temp_{os.path.basename(modules.globals.output_path)}")
create_success = create_video(modules.globals.target_path, video_fps, temp_output_video_path)
if not create_success:
update_status('Error: Failed to create video from processed frames.', 'ERROR')
# Cleanup might still run in finally block
return # Stop here
# --- Handle Audio Restoration ---
final_output_path = modules.globals.output_path
if modules.globals.keep_audio:
update_status('Restoring audio...', 'FFmpeg')
if not modules.globals.keep_fps:
update_status('Warning: Audio restoration enabled without --keep-fps. Sync issues may occur.', 'WARN')
# Ensure final output directory exists
final_output_dir = os.path.dirname(final_output_path)
if final_output_dir and not os.path.exists(final_output_dir): os.makedirs(final_output_dir)
# Restore audio from original target to the temp video, outputting to final path
audio_success = restore_audio(modules.globals.target_path, temp_output_video_path, final_output_path)
if audio_success:
update_status('Audio restoration complete.')
else:
update_status('Error: Audio restoration failed. Video saved without audio.', 'ERROR')
# As a fallback, move the no-audio video to the final path
try:
if os.path.exists(final_output_path): os.remove(final_output_path)
shutil.move(temp_output_video_path, final_output_path)
update_status(f'Fallback: Saved video without audio to {final_output_path}')
temp_output_video_path = None # Prevent deletion in finally
except Exception as move_e:
update_status(f'Error moving temporary video after failed audio restore: {move_e}', 'ERROR')
else:
# No audio requested, move the temp video to the final output path
update_status('Moving temporary video to final output path (no audio).')
try:
# Ensure final output directory exists
final_output_dir = os.path.dirname(final_output_path)
if final_output_dir and not os.path.exists(final_output_dir): os.makedirs(final_output_dir)
if os.path.abspath(temp_output_video_path) != os.path.abspath(final_output_path):
if os.path.exists(final_output_path):
os.remove(final_output_path) # Remove existing destination file first
shutil.move(temp_output_video_path, final_output_path)
temp_output_video_path = None # Prevent deletion in finally block
else:
update_status("Temporary video path is same as final output path. No move needed.", "WARN")
temp_output_video_path = None # Still prevent deletion
except Exception as move_e:
update_status(f'Error moving temporary video to final destination: {move_e}', 'ERROR')
# --- Validation ---
if os.path.exists(final_output_path) and is_video(final_output_path):
update_status('Video processing finished successfully.')
else:
update_status('Error: Final output video file not found or invalid after processing.', 'ERROR')
except Exception as e:
update_status(f'An unexpected error occurred during video processing: {e}', 'ERROR')
import traceback
traceback.print_exc()
finally:
# --- Clean Up Temporary Resources ---
if not modules.globals.keep_frames:
update_status("Cleaning temporary frame files...", "Temp")
clean_temp(modules.globals.target_path)
else:
update_status("Keeping temporary frame files (--keep-frames enabled).", "Temp")
# Remove intermediate temp video file if it exists and wasn't moved
if temp_output_video_path and os.path.exists(temp_output_video_path):
try:
os.remove(temp_output_video_path)
update_status(f"Removed intermediate video file: {temp_output_video_path}", "Temp")
except OSError as e:
update_status(f"Warning: Could not remove intermediate video file {temp_output_video_path}: {e}", "WARN")
# Final resource release
release_resources()
def destroy(to_quit: bool = True) -> None:
"""Cleans up temporary files, releases resources, and optionally exits."""
update_status("Initiating shutdown sequence...", "CLEANUP")
# Clean temp files only if target_path was set and keep_frames is false
if hasattr(modules.globals, 'target_path') and modules.globals.target_path and \
hasattr(modules.globals, 'keep_frames') and not modules.globals.keep_frames:
update_status("Cleaning temporary files (if any)...", "CLEANUP")
clean_temp(modules.globals.target_path)
# Release models and GPU memory
update_status("Releasing resources...", "CLEANUP")
release_resources()
# Explicitly clear processor instances (helps GC)
global FRAME_PROCESSORS_INSTANCES
if FRAME_PROCESSORS_INSTANCES:
# Call destroy method on processors if they have one
for processor in FRAME_PROCESSORS_INSTANCES:
if hasattr(processor, 'destroy') and callable(processor.destroy):
try:
processor.destroy()
except Exception as e:
print(f"\033[33mWarning: Error destroying processor {getattr(processor, 'NAME', '?')}: {e}\033[0m")
FRAME_PROCESSORS_INSTANCES.clear()
# Clear other potentially large global variables explicitly (optional)
if hasattr(modules.globals, 'source_target_map'): modules.globals.source_target_map = []
if hasattr(modules.globals, 'simple_map'): modules.globals.simple_map = {}
# Clear analyser cache (if it holds significant data)
global FACE_ANALYSER
FACE_ANALYSER = None # Allow GC to collect it
global _ort_session # For NSFW predictor
_ort_session = None
gc.collect() # Final GC run
update_status("Cleanup complete.", "CLEANUP")
if to_quit:
print("Exiting application.")
os._exit(0) # Use os._exit for a more forceful exit if needed, sys.exit(0) is generally preferred
def run() -> None:
"""Parses arguments, sets up environment, and starts processing or UI."""
# Set TERM environment variable for tqdm on Windows (helps with progress bar rendering)
if platform.system().lower() == 'windows':
os.environ['TERM'] = 'xterm' # Or 'vt100'
parser = parse_args() # Parse arguments first to set globals
# Apply GPU Memory Limit early, requires execution_providers to be set
limit_gpu_memory(GPU_MEMORY_LIMIT_FRACTION)
# Perform pre-checks (dependencies, versions, paths)
if not pre_check():
# Display help if critical checks fail in headless mode (e.g., missing paths)
if modules.globals.headless:
print("\033[31mCritical pre-check failed. Please review errors above.\033[0m")
parser.print_help()
destroy(to_quit=True)
return # Exit if pre-checks fail
# Limit other resources (CPU RAM, TF GPU options)
limit_resources()
# --- Processor Requirements Check ---
# Moved after parse_args and resource limits
active_processor_modules = get_frame_processors_modules(modules.globals.frame_processors)
all_processors_ready = True
if not active_processor_modules:
update_status('Error: No valid frame processors specified or found.', 'ERROR')
all_processors_ready = False
else:
for processor_module in active_processor_modules:
processor_name = getattr(processor_module, 'NAME', 'UnknownProcessor')
update_status(f'Checking requirements for {processor_name}...')
try:
if not processor_module.pre_check():
update_status(f'Requirements check failed for {processor_name}.', 'ERROR')
all_processors_ready = False
# Don't break early, report all failed checks
else:
update_status(f'Requirements met for {processor_name}.')
except Exception as e:
update_status(f'Error during requirements check for {processor_name}: {e}', 'ERROR')
all_processors_ready = False
if not all_processors_ready:
update_status('One or more frame processors failed requirement checks. Please review messages above.', 'ERROR')
destroy(to_quit=True)
return
# --- Run Mode ---
if modules.globals.headless:
update_status('Running in headless mode.')
# Face mapping requires specific setup before starting the main processing
if modules.globals.map_faces:
update_status("Mapping faces enabled, analyzing target...", "Face Analyser")
if is_video(modules.globals.target_path):
from modules.face_analyser import get_unique_faces_from_target_video
get_unique_faces_from_target_video()
elif is_image(modules.globals.target_path):
from modules.face_analyser import get_unique_faces_from_target_image
get_unique_faces_from_target_image()
else:
update_status("Map faces requires a valid target image or video.", "ERROR")
destroy(to_quit=True)
return
update_status("Target analysis for face mapping complete.", "Face Analyser")
start() # Run the main processing function
destroy(to_quit=True) # Exit after headless processing
else:
# Launch UI
update_status('Launching graphical user interface...')
# Ensure destroy is callable without arguments for the UI close button
destroy_wrapper = lambda: destroy(to_quit=True)
try:
window = ui.init(start, destroy_wrapper, modules.globals.lang)
window.mainloop()
except Exception as e:
print(f"\033[31mFatal Error initializing or running the UI: {e}\033[0m")
import traceback
traceback.print_exc()
destroy(to_quit=True) # Attempt cleanup and exit even if UI fails
# --- Main execution entry point ---
if __name__ == "__main__":
# Add project root to Python path (if core.py is not at the very top level)
# script_dir = os.path.dirname(os.path.abspath(__file__))
# project_root = os.path.dirname(script_dir) # Adjust if structure differs
# if project_root not in sys.path:
# sys.path.insert(0, project_root)
run()
# --- END OF FILE core.py ---