81 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			81 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Python
		
	
from typing import Any, List
 | 
						|
import cv2
 | 
						|
import insightface
 | 
						|
import threading
 | 
						|
import os
 | 
						|
 | 
						|
import modules.globals
 | 
						|
import modules.processors.frame.core
 | 
						|
from modules.core import update_status
 | 
						|
from modules.face_analyser import get_one_face, get_many_faces
 | 
						|
from modules.typing import Face, Frame
 | 
						|
from modules.utilities import conditional_download, resolve_relative_path, is_image, is_video
 | 
						|
 | 
						|
FACE_SWAPPER = None
 | 
						|
THREAD_LOCK = threading.Lock()
 | 
						|
NAME = 'DLC.FACE-SWAPPER'
 | 
						|
 | 
						|
def pre_check() -> bool:
 | 
						|
    download_directory_path = resolve_relative_path('../models')
 | 
						|
    conditional_download(download_directory_path, [
 | 
						|
        'https://huggingface.co/hacksider/deep-live-cam/blob/main/inswapper_128_fp16.onnx'
 | 
						|
    ])
 | 
						|
    return True
 | 
						|
 | 
						|
def pre_start() -> bool:
 | 
						|
    if not is_image(modules.globals.source_path):
 | 
						|
        update_status('Select an image for source path.', NAME)
 | 
						|
        return False
 | 
						|
    elif not get_one_face(cv2.imread(modules.globals.source_path)):
 | 
						|
        update_status('No face detected in the source path.', NAME)
 | 
						|
        return False
 | 
						|
    if not is_image(modules.globals.target_path) and not is_video(modules.globals.target_path):
 | 
						|
        update_status('Select an image or video for target path.', NAME)
 | 
						|
        return False
 | 
						|
    return True
 | 
						|
 | 
						|
def get_face_swapper() -> Any:
 | 
						|
    global FACE_SWAPPER
 | 
						|
 | 
						|
    with THREAD_LOCK:
 | 
						|
        if FACE_SWAPPER is None:
 | 
						|
            model_path = resolve_relative_path('../models/inswapper_128_fp16.onnx')
 | 
						|
            FACE_SWAPPER = insightface.model_zoo.get_model(model_path, providers=modules.globals.execution_providers)
 | 
						|
    return FACE_SWAPPER
 | 
						|
 | 
						|
def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
 | 
						|
    return get_face_swapper().get(temp_frame, target_face, source_face, paste_back=True)
 | 
						|
 | 
						|
def process_frame(source_face: Face, temp_frame: Frame) -> Frame:
 | 
						|
    if modules.globals.many_faces:
 | 
						|
        many_faces = get_many_faces(temp_frame)
 | 
						|
        if many_faces:
 | 
						|
            for target_face in many_faces:
 | 
						|
                temp_frame = swap_face(source_face, target_face, temp_frame)
 | 
						|
    else:
 | 
						|
        target_face = get_one_face(temp_frame)
 | 
						|
        if target_face:
 | 
						|
            temp_frame = swap_face(source_face, target_face, temp_frame)
 | 
						|
    return temp_frame
 | 
						|
 | 
						|
def process_frames(source_path: str, temp_frame_paths: List[str], progress: Any = None) -> None:
 | 
						|
    source_face = get_one_face(cv2.imread(source_path))
 | 
						|
    for temp_frame_path in temp_frame_paths:
 | 
						|
        temp_frame = cv2.imread(temp_frame_path)
 | 
						|
        try:
 | 
						|
            result = process_frame(source_face, temp_frame)
 | 
						|
            cv2.imwrite(temp_frame_path, result)
 | 
						|
        except Exception as exception:
 | 
						|
            print(f"Error processing frame {temp_frame_path}: {exception}")
 | 
						|
        if progress:
 | 
						|
            progress.update(1)
 | 
						|
 | 
						|
def process_image(source_path: str, target_path: str, output_path: str) -> None:
 | 
						|
    source_face = get_one_face(cv2.imread(source_path))
 | 
						|
    target_frame = cv2.imread(target_path)
 | 
						|
    result = process_frame(source_face, target_frame)
 | 
						|
    cv2.imwrite(output_path, result)
 | 
						|
 | 
						|
def process_video(source_path: str, temp_frame_paths: List[str]) -> None:
 | 
						|
    modules.processors.frame.core.process_video(source_path, temp_frame_paths, process_frames)
 |