from typing import Any, List import cv2 import insightface import threading import numpy as np import modules.globals import logging import modules.processors.frame.core from modules.core import update_status from modules.face_analyser import get_one_face, get_many_faces, default_source_face from modules.typing import Face, Frame from modules.hair_segmenter import segment_hair from modules.utilities import ( conditional_download, is_image, is_video, ) from modules.cluster_analysis import find_closest_centroid import os FACE_SWAPPER = None THREAD_LOCK = threading.Lock() NAME = "DLC.FACE-SWAPPER" abs_dir = os.path.dirname(os.path.abspath(__file__)) models_dir = os.path.join( os.path.dirname(os.path.dirname(os.path.dirname(abs_dir))), "models" ) def pre_check() -> bool: download_directory_path = abs_dir conditional_download( download_directory_path, [ "https://huggingface.co/hacksider/deep-live-cam/blob/main/inswapper_128_fp16.onnx" ], ) return True def pre_start() -> bool: if not modules.globals.map_faces and not is_image(modules.globals.source_path): update_status("Select an image for source path.", NAME) return False elif not modules.globals.map_faces and not get_one_face( cv2.imread(modules.globals.source_path) ): update_status("No face in source path detected.", NAME) return False if not is_image(modules.globals.target_path) and not is_video( modules.globals.target_path ): update_status("Select an image or video for target path.", NAME) return False return True def get_face_swapper() -> Any: global FACE_SWAPPER with THREAD_LOCK: if FACE_SWAPPER is None: model_path = os.path.join(models_dir, "inswapper_128_fp16.onnx") FACE_SWAPPER = insightface.model_zoo.get_model( model_path, providers=modules.globals.execution_providers ) return FACE_SWAPPER def _prepare_warped_source_material_and_mask( source_face_obj: Face, source_frame_full: Frame, matrix: np.ndarray, dsize: tuple ) -> tuple[Frame | None, Frame | None]: """ Prepares warped source material (full image) and a combined (face+hair) mask for blending. Returns (None, None) if essential masks cannot be generated. """ # Generate Hair Mask hair_only_mask_source_raw = segment_hair(source_frame_full) if hair_only_mask_source_raw.ndim == 3 and hair_only_mask_source_raw.shape[2] == 3: hair_only_mask_source_raw = cv2.cvtColor(hair_only_mask_source_raw, cv2.COLOR_BGR2GRAY) _, hair_only_mask_source_binary = cv2.threshold(hair_only_mask_source_raw, 127, 255, cv2.THRESH_BINARY) # Generate Face Mask face_only_mask_source_raw = create_face_mask(source_face_obj, source_frame_full) _, face_only_mask_source_binary = cv2.threshold(face_only_mask_source_raw, 127, 255, cv2.THRESH_BINARY) # Combine Face and Hair Masks if face_only_mask_source_binary.shape != hair_only_mask_source_binary.shape: logging.warning("Resizing hair mask to match face mask for source during preparation.") hair_only_mask_source_binary = cv2.resize( hair_only_mask_source_binary, (face_only_mask_source_binary.shape[1], face_only_mask_source_binary.shape[0]), interpolation=cv2.INTER_NEAREST ) actual_combined_source_mask = cv2.bitwise_or(face_only_mask_source_binary, hair_only_mask_source_binary) actual_combined_source_mask_blurred = cv2.GaussianBlur(actual_combined_source_mask, (5, 5), 3) # Warp the Combined Mask and Full Source Material warped_full_source_material = cv2.warpAffine(source_frame_full, matrix, dsize) warped_combined_mask_temp = cv2.warpAffine(actual_combined_source_mask_blurred, matrix, dsize) _, warped_combined_mask_binary_for_clone = cv2.threshold(warped_combined_mask_temp, 127, 255, cv2.THRESH_BINARY) return warped_full_source_material, warped_combined_mask_binary_for_clone def _blend_material_onto_frame( base_frame: Frame, material_to_blend: Frame, mask_for_blending: Frame ) -> Frame: """ Blends material onto a base frame using a mask. Uses seamlessClone if possible, otherwise falls back to simple masking. """ x, y, w, h = cv2.boundingRect(mask_for_blending) output_frame = base_frame # Start with base, will be modified by blending if w > 0 and h > 0: center = (x + w // 2, y + h // 2) if material_to_blend.shape == base_frame.shape and \ material_to_blend.dtype == base_frame.dtype and \ mask_for_blending.dtype == np.uint8: try: # Important: seamlessClone modifies the first argument (dst) if it's the same as the output var # So, if base_frame is final_swapped_frame, it will be modified in place. # If we want to keep base_frame pristine, it should be base_frame.copy() if it's also final_swapped_frame. # Given final_swapped_frame is already a copy of swapped_frame at this point, this is fine. output_frame = cv2.seamlessClone(material_to_blend, base_frame, mask_for_blending, center, cv2.NORMAL_CLONE) except cv2.error as e: logging.warning(f"cv2.seamlessClone failed: {e}. Falling back to simple blending.") boolean_mask = mask_for_blending > 127 output_frame[boolean_mask] = material_to_blend[boolean_mask] else: logging.warning("Mismatch in shape/type for seamlessClone. Falling back to simple blending.") boolean_mask = mask_for_blending > 127 output_frame[boolean_mask] = material_to_blend[boolean_mask] else: logging.info("Warped mask for blending is empty. Skipping blending.") return output_frame def swap_face(source_face_obj: Face, target_face: Face, source_frame_full: Frame, temp_frame: Frame) -> Frame: face_swapper = get_face_swapper() # Apply the base face swap swapped_frame = face_swapper.get(temp_frame, target_face, source_face_obj, paste_back=True) final_swapped_frame = swapped_frame # Initialize with the base swap. Copy is made only if needed. if modules.globals.enable_hair_swapping: if not (source_face_obj.kps is not None and \ target_face.kps is not None and \ source_face_obj.kps.shape[0] >= 3 and \ target_face.kps.shape[0] >= 3): logging.warning( f"Skipping hair blending due to insufficient keypoints. " f"Source kps: {source_face_obj.kps.shape if source_face_obj.kps is not None else 'None'}, " f"Target kps: {target_face.kps.shape if target_face.kps is not None else 'None'}." ) else: source_kps_float = source_face_obj.kps.astype(np.float32) target_kps_float = target_face.kps.astype(np.float32) matrix, _ = cv2.estimateAffinePartial2D(source_kps_float, target_kps_float, method=cv2.LMEDS) if matrix is None: logging.warning("Failed to estimate affine transformation matrix for hair. Skipping hair blending.") else: dsize = (temp_frame.shape[1], temp_frame.shape[0]) # width, height warped_material, warped_mask = _prepare_warped_source_material_and_mask( source_face_obj, source_frame_full, matrix, dsize ) if warped_material is not None and warped_mask is not None: # Make a copy only now that we are sure we will modify it for hair. final_swapped_frame = swapped_frame.copy() color_corrected_material = apply_color_transfer(warped_material, final_swapped_frame) # Use final_swapped_frame for color context final_swapped_frame = _blend_material_onto_frame( final_swapped_frame, color_corrected_material, warped_mask ) # Mouth Mask Logic (operates on final_swapped_frame) if modules.globals.mouth_mask: # If final_swapped_frame wasn't copied for hair, it needs to be copied now before mouth mask modification. if final_swapped_frame is swapped_frame: # Check if it's still the same object final_swapped_frame = swapped_frame.copy() # Create a mask for the target face face_mask = create_face_mask(target_face, temp_frame) # Create the mouth mask mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon = ( create_lower_mouth_mask(target_face, temp_frame) ) # Apply the mouth area # Apply to final_swapped_frame if hair blending happened, otherwise to swapped_frame final_swapped_frame = apply_mouth_area( final_swapped_frame, mouth_cutout, mouth_box, face_mask, lower_lip_polygon ) if modules.globals.show_mouth_mask_box: mouth_mask_data = (mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon) final_swapped_frame = draw_mouth_mask_visualization( final_swapped_frame, target_face, mouth_mask_data ) return final_swapped_frame def process_frame(source_face_obj: Face, source_frame_full: Frame, temp_frame: Frame) -> Frame: if modules.globals.color_correction: temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) if modules.globals.many_faces: many_faces = get_many_faces(temp_frame) if many_faces: for target_face in many_faces: if source_face_obj and target_face: temp_frame = swap_face(source_face_obj, target_face, source_frame_full, temp_frame) else: print("Face detection failed for target/source.") else: target_face = get_one_face(temp_frame) if target_face and source_face_obj: temp_frame = swap_face(source_face_obj, target_face, source_frame_full, temp_frame) else: logging.error("Face detection failed for target or source.") return temp_frame # process_frame_v2 needs to accept source_frame_full as well def _process_image_target_v2(source_frame_full: Frame, temp_frame: Frame) -> Frame: if modules.globals.many_faces: source_face_obj = default_source_face() if source_face_obj: for map_item in modules.globals.source_target_map: target_face = map_item["target"]["face"] temp_frame = swap_face(source_face_obj, target_face, source_frame_full, temp_frame) else: # not many_faces for map_item in modules.globals.source_target_map: if "source" in map_item: source_face_obj = map_item["source"]["face"] target_face = map_item["target"]["face"] temp_frame = swap_face(source_face_obj, target_face, source_frame_full, temp_frame) return temp_frame def _process_video_target_v2(source_frame_full: Frame, temp_frame: Frame, temp_frame_path: str) -> Frame: if modules.globals.many_faces: source_face_obj = default_source_face() if source_face_obj: for map_item in modules.globals.source_target_map: target_frames_data = [f for f in map_item.get("target_faces_in_frame", []) if f.get("location") == temp_frame_path] for frame_data in target_frames_data: for target_face in frame_data.get("faces", []): temp_frame = swap_face(source_face_obj, target_face, source_frame_full, temp_frame) else: # not many_faces for map_item in modules.globals.source_target_map: if "source" in map_item: source_face_obj = map_item["source"]["face"] target_frames_data = [f for f in map_item.get("target_faces_in_frame", []) if f.get("location") == temp_frame_path] for frame_data in target_frames_data: for target_face in frame_data.get("faces", []): temp_frame = swap_face(source_face_obj, target_face, source_frame_full, temp_frame) return temp_frame def _process_live_target_v2(source_frame_full: Frame, temp_frame: Frame) -> Frame: detected_faces = get_many_faces(temp_frame) if not detected_faces: return temp_frame if modules.globals.many_faces: source_face_obj = default_source_face() if source_face_obj: for target_face in detected_faces: temp_frame = swap_face(source_face_obj, target_face, source_frame_full, temp_frame) else: # not many_faces (apply simple_map logic) if not modules.globals.simple_map or \ not modules.globals.simple_map.get("target_embeddings") or \ not modules.globals.simple_map.get("source_faces"): logging.warning("Simple map is not configured correctly. Skipping face swap.") return temp_frame target_embeddings = modules.globals.simple_map["target_embeddings"] source_faces_from_map = modules.globals.simple_map["source_faces"] if len(detected_faces) <= len(target_embeddings): for detected_face in detected_faces: closest_centroid_index, _ = find_closest_centroid(target_embeddings, detected_face.normed_embedding) if closest_centroid_index < len(source_faces_from_map): source_face_obj_from_map = source_faces_from_map[closest_centroid_index] temp_frame = swap_face(source_face_obj_from_map, detected_face, source_frame_full, temp_frame) else: logging.warning(f"Centroid index {closest_centroid_index} out of bounds for source_faces_from_map.") else: # More detected faces than target embeddings in simple_map detected_faces_embeddings = [face.normed_embedding for face in detected_faces] for i, target_embedding in enumerate(target_embeddings): if i < len(source_faces_from_map): closest_detected_face_index, _ = find_closest_centroid(detected_faces_embeddings, target_embedding) source_face_obj_from_map = source_faces_from_map[i] target_face_to_swap = detected_faces[closest_detected_face_index] temp_frame = swap_face(source_face_obj_from_map, target_face_to_swap, source_frame_full, temp_frame) # Optionally, remove the swapped detected face to prevent re-swapping if one source maps to multiple targets. # This depends on desired behavior. For now, simple independent mapping. else: logging.warning(f"Index {i} out of bounds for source_faces_from_map in simple_map else case.") return temp_frame def process_frame_v2(source_frame_full: Frame, temp_frame: Frame, temp_frame_path: str = "") -> Frame: if is_image(modules.globals.target_path): return _process_image_target_v2(source_frame_full, temp_frame) elif is_video(modules.globals.target_path): return _process_video_target_v2(source_frame_full, temp_frame, temp_frame_path) else: # This is the live cam / generic case return _process_live_target_v2(source_frame_full, temp_frame) def process_frames( source_path: str, temp_frame_paths: List[str], progress: Any = None ) -> None: source_img = cv2.imread(source_path) if source_img is None: logging.error(f"Failed to read source image from {source_path}") return if not modules.globals.map_faces: source_face_obj = get_one_face(source_img) # Use source_img here if not source_face_obj: logging.error(f"No face detected in source image {source_path}") return for temp_frame_path in temp_frame_paths: temp_frame = cv2.imread(temp_frame_path) if temp_frame is None: logging.warning(f"Failed to read temp_frame from {temp_frame_path}, skipping.") continue try: result = process_frame(source_face_obj, source_img, temp_frame) cv2.imwrite(temp_frame_path, result) except Exception as exception: logging.error(f"Error processing frame {temp_frame_path}: {exception}", exc_info=True) pass if progress: progress.update(1) else: # This is for map_faces == True # In map_faces=True, source_face is determined per mapping. # process_frame_v2 will need source_frame_full for hair, # which should be the original source_path image. for temp_frame_path in temp_frame_paths: temp_frame = cv2.imread(temp_frame_path) if temp_frame is None: logging.warning(f"Failed to read temp_frame from {temp_frame_path}, skipping.") continue try: # Pass source_img (as source_frame_full) to process_frame_v2 result = process_frame_v2(source_img, temp_frame, temp_frame_path) cv2.imwrite(temp_frame_path, result) except Exception as exception: logging.error(f"Error processing frame {temp_frame_path} with map_faces: {exception}", exc_info=True) pass if progress: progress.update(1) def process_image(source_path: str, target_path: str, output_path: str) -> None: source_img = cv2.imread(source_path) if source_img is None: logging.error(f"Failed to read source image from {source_path}") return target_frame = cv2.imread(target_path) if target_frame is None: logging.error(f"Failed to read target image from {target_path}") return # Read the original target frame once at the beginning original_target_frame = cv2.imread(target_path) if original_target_frame is None: logging.error(f"Failed to read original target image from {target_path}") return result = None # Initialize result if not modules.globals.map_faces: source_face_obj = get_one_face(source_img) # Use source_img here if not source_face_obj: logging.error(f"No face detected in source image {source_path}") return result = process_frame(source_face_obj, source_img, original_target_frame) else: # map_faces is True if modules.globals.many_faces: update_status( "Many faces enabled. Using first source image. Progressing...", NAME ) # process_frame_v2 takes the original target frame for processing. # target_path is passed as temp_frame_path for consistency with process_frame_v2's signature, # used for map lookups in video context but less critical for single images. result = process_frame_v2(source_img, original_target_frame, target_path) if result is not None: cv2.imwrite(output_path, result) else: logging.error(f"Processing image {target_path} failed, result was None.") def process_video(source_path: str, temp_frame_paths: List[str]) -> None: if modules.globals.map_faces and modules.globals.many_faces: update_status( "Many faces enabled. Using first source image. Progressing...", NAME ) modules.processors.frame.core.process_video( source_path, temp_frame_paths, process_frames ) def create_lower_mouth_mask( face: Face, frame: Frame ) -> (np.ndarray, np.ndarray, tuple, np.ndarray): mask = np.zeros(frame.shape[:2], dtype=np.uint8) mouth_cutout = None landmarks = face.landmark_2d_106 if landmarks is not None: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 lower_lip_order = [ 65, 66, 62, 70, 69, 18, 19, 20, 21, 22, 23, 24, 0, 8, 7, 6, 5, 4, 3, 2, 65, ] lower_lip_landmarks = landmarks[lower_lip_order].astype( np.float32 ) # Use float for precise calculations # Calculate the center of the landmarks center = np.mean(lower_lip_landmarks, axis=0) # Expand the landmarks outward expansion_factor = ( 1 + modules.globals.mask_down_size ) # Adjust this for more or less expansion expanded_landmarks = (lower_lip_landmarks - center) * expansion_factor + center # Extend the top lip part toplip_indices = [ 20, 0, 1, 2, 3, 4, 5, ] # Indices for landmarks 2, 65, 66, 62, 70, 69, 18 toplip_extension = ( modules.globals.mask_size * 0.5 ) # Adjust this factor to control the extension for idx in toplip_indices: direction = expanded_landmarks[idx] - center direction = direction / np.linalg.norm(direction) expanded_landmarks[idx] += direction * toplip_extension # Extend the bottom part (chin area) chin_indices = [ 11, 12, 13, 14, 15, 16, ] # Indices for landmarks 21, 22, 23, 24, 0, 8 chin_extension = 2 * 0.2 # Adjust this factor to control the extension for idx in chin_indices: expanded_landmarks[idx][1] += ( expanded_landmarks[idx][1] - center[1] ) * chin_extension # Convert back to integer coordinates expanded_landmarks = expanded_landmarks.astype(np.int32) # Calculate bounding box for the expanded lower mouth min_x, min_y = np.min(expanded_landmarks, axis=0) max_x, max_y = np.max(expanded_landmarks, axis=0) # Add some padding to the bounding box padding = int((max_x - min_x) * 0.1) # 10% padding min_x = max(0, min_x - padding) min_y = max(0, min_y - padding) max_x = min(frame.shape[1], max_x + padding) max_y = min(frame.shape[0], max_y + padding) # Ensure the bounding box dimensions are valid if max_x <= min_x or max_y <= min_y: if (max_x - min_x) <= 1: max_x = min_x + 1 if (max_y - min_y) <= 1: max_y = min_y + 1 # Create the mask mask_roi = np.zeros((max_y - min_y, max_x - min_x), dtype=np.uint8) cv2.fillPoly(mask_roi, [expanded_landmarks - [min_x, min_y]], 255) # Apply Gaussian blur to soften the mask edges mask_roi = cv2.GaussianBlur(mask_roi, (15, 15), 5) # Place the mask ROI in the full-sized mask mask[min_y:max_y, min_x:max_x] = mask_roi # Extract the masked area from the frame mouth_cutout = frame[min_y:max_y, min_x:max_x].copy() # Return the expanded lower lip polygon in original frame coordinates lower_lip_polygon = expanded_landmarks return mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon def draw_mouth_mask_visualization( frame: Frame, face: Face, mouth_mask_data: tuple ) -> Frame: landmarks = face.landmark_2d_106 if landmarks is not None and mouth_mask_data is not None: mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon = ( mouth_mask_data ) vis_frame = frame.copy() # Ensure coordinates are within frame bounds height, width = vis_frame.shape[:2] min_x, min_y = max(0, min_x), max(0, min_y) max_x, max_y = min(width, max_x), min(height, max_y) # Adjust mask to match the region size mask_region = mask[0 : max_y - min_y, 0 : max_x - min_x] # Remove the color mask overlay # color_mask = cv2.applyColorMap((mask_region * 255).astype(np.uint8), cv2.COLORMAP_JET) # Ensure shapes match before blending vis_region = vis_frame[min_y:max_y, min_x:max_x] # Remove blending with color_mask # if vis_region.shape[:2] == color_mask.shape[:2]: # blended = cv2.addWeighted(vis_region, 0.7, color_mask, 0.3, 0) # vis_frame[min_y:max_y, min_x:max_x] = blended # Draw the lower lip polygon cv2.polylines(vis_frame, [lower_lip_polygon], True, (0, 255, 0), 2) # Remove the red box # cv2.rectangle(vis_frame, (min_x, min_y), (max_x, max_y), (0, 0, 255), 2) # Visualize the feathered mask feather_amount = max( 1, min( 30, (max_x - min_x) // modules.globals.mask_feather_ratio, (max_y - min_y) // modules.globals.mask_feather_ratio, ), ) # Ensure kernel size is odd kernel_size = 2 * feather_amount + 1 feathered_mask = cv2.GaussianBlur( mask_region.astype(float), (kernel_size, kernel_size), 0 ) feathered_mask = (feathered_mask / feathered_mask.max() * 255).astype(np.uint8) # Remove the feathered mask color overlay # color_feathered_mask = cv2.applyColorMap(feathered_mask, cv2.COLORMAP_VIRIDIS) # Ensure shapes match before blending feathered mask # if vis_region.shape == color_feathered_mask.shape: # blended_feathered = cv2.addWeighted(vis_region, 0.7, color_feathered_mask, 0.3, 0) # vis_frame[min_y:max_y, min_x:max_x] = blended_feathered # Add labels cv2.putText( vis_frame, "Lower Mouth Mask", (min_x, min_y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1, ) cv2.putText( vis_frame, "Feathered Mask", (min_x, max_y + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1, ) return vis_frame return frame def apply_mouth_area( frame: np.ndarray, mouth_cutout: np.ndarray, mouth_box: tuple, face_mask: np.ndarray, mouth_polygon: np.ndarray, ) -> np.ndarray: min_x, min_y, max_x, max_y = mouth_box box_width = max_x - min_x box_height = max_y - min_y if ( mouth_cutout is None or box_width is None or box_height is None or face_mask is None or mouth_polygon is None ): return frame try: resized_mouth_cutout = cv2.resize(mouth_cutout, (box_width, box_height)) roi = frame[min_y:max_y, min_x:max_x] if roi.shape != resized_mouth_cutout.shape: resized_mouth_cutout = cv2.resize( resized_mouth_cutout, (roi.shape[1], roi.shape[0]) ) color_corrected_mouth = apply_color_transfer(resized_mouth_cutout, roi) # Use the provided mouth polygon to create the mask polygon_mask = np.zeros(roi.shape[:2], dtype=np.uint8) adjusted_polygon = mouth_polygon - [min_x, min_y] cv2.fillPoly(polygon_mask, [adjusted_polygon], 255) # Apply feathering to the polygon mask feather_amount = min( 30, box_width // modules.globals.mask_feather_ratio, box_height // modules.globals.mask_feather_ratio, ) feathered_mask = cv2.GaussianBlur( polygon_mask.astype(float), (0, 0), feather_amount ) feathered_mask = feathered_mask / feathered_mask.max() face_mask_roi = face_mask[min_y:max_y, min_x:max_x] combined_mask = feathered_mask * (face_mask_roi / 255.0) combined_mask = combined_mask[:, :, np.newaxis] blended = ( color_corrected_mouth * combined_mask + roi * (1 - combined_mask) ).astype(np.uint8) # Apply face mask to blended result face_mask_3channel = ( np.repeat(face_mask_roi[:, :, np.newaxis], 3, axis=2) / 255.0 ) final_blend = blended * face_mask_3channel + roi * (1 - face_mask_3channel) frame[min_y:max_y, min_x:max_x] = final_blend.astype(np.uint8) except Exception as e: pass return frame def create_face_mask(face: Face, frame: Frame) -> np.ndarray: mask = np.zeros(frame.shape[:2], dtype=np.uint8) landmarks = face.landmark_2d_106 if landmarks is not None: # Convert landmarks to int32 landmarks = landmarks.astype(np.int32) # Extract facial features right_side_face = landmarks[0:16] left_side_face = landmarks[17:32] right_eye = landmarks[33:42] right_eye_brow = landmarks[43:51] left_eye = landmarks[87:96] left_eye_brow = landmarks[97:105] # Calculate forehead extension right_eyebrow_top = np.min(right_eye_brow[:, 1]) left_eyebrow_top = np.min(left_eye_brow[:, 1]) eyebrow_top = min(right_eyebrow_top, left_eyebrow_top) face_top = np.min([right_side_face[0, 1], left_side_face[-1, 1]]) forehead_height = face_top - eyebrow_top extended_forehead_height = int(forehead_height * 5.0) # Extend by 50% # Create forehead points forehead_left = right_side_face[0].copy() forehead_right = left_side_face[-1].copy() forehead_left[1] -= extended_forehead_height forehead_right[1] -= extended_forehead_height # Combine all points to create the face outline face_outline = np.vstack( [ [forehead_left], right_side_face, left_side_face[ ::-1 ], # Reverse left side to create a continuous outline [forehead_right], ] ) # Calculate padding padding = int( np.linalg.norm(right_side_face[0] - left_side_face[-1]) * 0.05 ) # 5% of face width # Create a slightly larger convex hull for padding hull = cv2.convexHull(face_outline) hull_padded = [] for point in hull: x, y = point[0] center = np.mean(face_outline, axis=0) direction = np.array([x, y]) - center direction = direction / np.linalg.norm(direction) padded_point = np.array([x, y]) + direction * padding hull_padded.append(padded_point) hull_padded = np.array(hull_padded, dtype=np.int32) # Fill the padded convex hull cv2.fillConvexPoly(mask, hull_padded, 255) # Smooth the mask edges mask = cv2.GaussianBlur(mask, (5, 5), 3) return mask def apply_color_transfer(source, target): """ Apply color transfer from target to source image """ source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype("float32") target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype("float32") source_mean, source_std = cv2.meanStdDev(source) target_mean, target_std = cv2.meanStdDev(target) # Reshape mean and std to be broadcastable source_mean = source_mean.reshape(1, 1, 3) source_std = source_std.reshape(1, 1, 3) target_mean = target_mean.reshape(1, 1, 3) target_std = target_std.reshape(1, 1, 3) # Perform the color transfer source = (source - source_mean) * (target_std / source_std) + target_mean return cv2.cvtColor(np.clip(source, 0, 255).astype("uint8"), cv2.COLOR_LAB2BGR)