from typing import Any, List import cv2 import threading import gfpgan import os import modules.globals import modules.processors.frame.core from modules.core import update_status from modules.face_analyser import get_one_face from modules.typing import Frame, Face import platform import torch from modules.utilities import ( conditional_download, is_image, is_video, ) FACE_ENHANCER = None THREAD_SEMAPHORE = threading.Semaphore() THREAD_LOCK = threading.Lock() NAME = "DLC.FACE-ENHANCER" abs_dir = os.path.dirname(os.path.abspath(__file__)) models_dir = os.path.join( os.path.dirname(os.path.dirname(os.path.dirname(abs_dir))), "models" ) def pre_check() -> bool: download_directory_path = models_dir conditional_download( download_directory_path, [ "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/GFPGANv1.4.pth" ], ) return True def pre_start() -> bool: if not is_image(modules.globals.target_path) and not is_video( modules.globals.target_path ): update_status("Select an image or video for target path.", NAME) return False return True TENSORRT_AVAILABLE = False try: import torch_tensorrt TENSORRT_AVAILABLE = True except ImportError as im: print(f"TensorRT is not available: {im}") pass except Exception as e: print(f"TensorRT is not available: {e}") pass def get_face_enhancer() -> Any: global FACE_ENHANCER with THREAD_LOCK: if FACE_ENHANCER is None: model_path = os.path.join(models_dir, "GFPGANv1.4.pth") selected_device = None device_priority = [] if TENSORRT_AVAILABLE and torch.cuda.is_available(): selected_device = torch.device("cuda") device_priority.append("TensorRT+CUDA") elif torch.cuda.is_available(): selected_device = torch.device("cuda") device_priority.append("CUDA") elif torch.backends.mps.is_available() and platform.system() == "Darwin": selected_device = torch.device("mps") device_priority.append("MPS") elif not torch.cuda.is_available(): selected_device = torch.device("cpu") device_priority.append("CPU") FACE_ENHANCER = gfpgan.GFPGANer(model_path=model_path, upscale=1, device=selected_device) # for debug: print(f"Selected device: {selected_device} and device priority: {device_priority}") return FACE_ENHANCER def enhance_face(temp_frame: Frame) -> Frame: with THREAD_SEMAPHORE: _, _, temp_frame = get_face_enhancer().enhance(temp_frame, paste_back=True) return temp_frame def process_frame(source_face: Face, temp_frame: Frame) -> Frame: target_face = get_one_face(temp_frame) if target_face: temp_frame = enhance_face(temp_frame) return temp_frame def process_frames( source_path: str, temp_frame_paths: List[str], progress: Any = None ) -> None: for temp_frame_path in temp_frame_paths: temp_frame = cv2.imread(temp_frame_path) result = process_frame(None, temp_frame) cv2.imwrite(temp_frame_path, result) if progress: progress.update(1) def process_image(source_path: str, target_path: str, output_path: str) -> None: target_frame = cv2.imread(target_path) result = process_frame(None, target_frame) cv2.imwrite(output_path, result) def process_video(source_path: str, temp_frame_paths: List[str]) -> None: modules.processors.frame.core.process_video(None, temp_frame_paths, process_frames) def process_frame_v2(temp_frame: Frame) -> Frame: target_face = get_one_face(temp_frame) if target_face: temp_frame = enhance_face(temp_frame) return temp_frame