from typing import Any, List import cv2 import insightface import threading import numpy as np import modules.globals import modules.processors.frame.core from modules.core import update_status from modules.face_analyser import get_one_face, get_many_faces, default_source_face from modules.typing import Face, Frame from modules.utilities import ( conditional_download, is_image, is_video, ) from modules.cluster_analysis import find_closest_centroid import os FACE_SWAPPER = None THREAD_LOCK = threading.Lock() NAME = "DLC.FACE-SWAPPER" abs_dir = os.path.dirname(os.path.abspath(__file__)) models_dir = os.path.join( os.path.dirname(os.path.dirname(os.path.dirname(abs_dir))), "models" ) def pre_check() -> bool: download_directory_path = abs_dir conditional_download( download_directory_path, [ "https://huggingface.co/hacksider/deep-live-cam/blob/main/inswapper_128_fp16.onnx" ], ) return True def pre_start() -> bool: if not modules.globals.map_faces and not is_image(modules.globals.source_path): update_status("Select an image for source path.", NAME) return False elif not modules.globals.map_faces and not get_one_face( cv2.imread(modules.globals.source_path) ): update_status("No face in source path detected.", NAME) return False if not is_image(modules.globals.target_path) and not is_video( modules.globals.target_path ): update_status("Select an image or video for target path.", NAME) return False return True def get_face_swapper() -> Any: global FACE_SWAPPER with THREAD_LOCK: if FACE_SWAPPER is None: model_path = os.path.join(models_dir, "inswapper_128_fp16.onnx") FACE_SWAPPER = insightface.model_zoo.get_model( model_path, providers=modules.globals.execution_providers ) return FACE_SWAPPER def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame: face_swapper = get_face_swapper() # Apply the face swap swapped_frame = face_swapper.get( temp_frame, target_face, source_face, paste_back=True ) # Create face mask for both mouth and eyes masking face_mask = create_face_mask(target_face, temp_frame) if modules.globals.mouth_mask: # Create the mouth mask mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon = ( create_lower_mouth_mask(target_face, temp_frame) ) # Apply the mouth area swapped_frame = apply_mouth_area( swapped_frame, mouth_cutout, mouth_box, face_mask, lower_lip_polygon ) if modules.globals.show_mouth_mask_box: mouth_mask_data = (mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon) swapped_frame = draw_mouth_mask_visualization( swapped_frame, target_face, mouth_mask_data ) if modules.globals.eyes_mask: # Create the eyes mask eyes_mask, eyes_cutout, eyes_box, eyes_polygon = ( create_eyes_mask(target_face, temp_frame) ) # Apply the eyes area swapped_frame = apply_eyes_area( swapped_frame, eyes_cutout, eyes_box, face_mask, eyes_polygon ) if modules.globals.show_eyes_mask_box: eyes_mask_data = (eyes_mask, eyes_cutout, eyes_box, eyes_polygon) swapped_frame = draw_eyes_mask_visualization( swapped_frame, target_face, eyes_mask_data ) if modules.globals.eyebrows_mask: # Create the eyebrows mask eyebrows_mask, eyebrows_cutout, eyebrows_box, eyebrows_polygon = ( create_eyebrows_mask(target_face, temp_frame) ) # Apply the eyebrows area swapped_frame = apply_eyebrows_area( swapped_frame, eyebrows_cutout, eyebrows_box, face_mask, eyebrows_polygon ) if modules.globals.show_eyebrows_mask_box: eyebrows_mask_data = (eyebrows_mask, eyebrows_cutout, eyebrows_box, eyebrows_polygon) swapped_frame = draw_eyebrows_mask_visualization( swapped_frame, target_face, eyebrows_mask_data ) return swapped_frame def process_frame(source_face: Face, temp_frame: Frame) -> Frame: if modules.globals.color_correction: temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) if modules.globals.many_faces: many_faces = get_many_faces(temp_frame) if many_faces: for target_face in many_faces: temp_frame = swap_face(source_face, target_face, temp_frame) else: target_face = get_one_face(temp_frame) if target_face: temp_frame = swap_face(source_face, target_face, temp_frame) return temp_frame def process_frame_v2(temp_frame: Frame, temp_frame_path: str = "") -> Frame: if is_image(modules.globals.target_path): if modules.globals.many_faces: source_face = default_source_face() for map in modules.globals.souce_target_map: target_face = map["target"]["face"] temp_frame = swap_face(source_face, target_face, temp_frame) elif not modules.globals.many_faces: for map in modules.globals.souce_target_map: if "source" in map: source_face = map["source"]["face"] target_face = map["target"]["face"] temp_frame = swap_face(source_face, target_face, temp_frame) elif is_video(modules.globals.target_path): if modules.globals.many_faces: source_face = default_source_face() for map in modules.globals.souce_target_map: target_frame = [ f for f in map["target_faces_in_frame"] if f["location"] == temp_frame_path ] for frame in target_frame: for target_face in frame["faces"]: temp_frame = swap_face(source_face, target_face, temp_frame) elif not modules.globals.many_faces: for map in modules.globals.souce_target_map: if "source" in map: target_frame = [ f for f in map["target_faces_in_frame"] if f["location"] == temp_frame_path ] source_face = map["source"]["face"] for frame in target_frame: for target_face in frame["faces"]: temp_frame = swap_face(source_face, target_face, temp_frame) else: detected_faces = get_many_faces(temp_frame) if modules.globals.many_faces: if detected_faces: source_face = default_source_face() for target_face in detected_faces: temp_frame = swap_face(source_face, target_face, temp_frame) elif not modules.globals.many_faces: if detected_faces: if len(detected_faces) <= len( modules.globals.simple_map["target_embeddings"] ): for detected_face in detected_faces: closest_centroid_index, _ = find_closest_centroid( modules.globals.simple_map["target_embeddings"], detected_face.normed_embedding, ) temp_frame = swap_face( modules.globals.simple_map["source_faces"][ closest_centroid_index ], detected_face, temp_frame, ) else: detected_faces_centroids = [] for face in detected_faces: detected_faces_centroids.append(face.normed_embedding) i = 0 for target_embedding in modules.globals.simple_map[ "target_embeddings" ]: closest_centroid_index, _ = find_closest_centroid( detected_faces_centroids, target_embedding ) temp_frame = swap_face( modules.globals.simple_map["source_faces"][i], detected_faces[closest_centroid_index], temp_frame, ) i += 1 return temp_frame def process_frames( source_path: str, temp_frame_paths: List[str], progress: Any = None ) -> None: if not modules.globals.map_faces: source_face = get_one_face(cv2.imread(source_path)) for temp_frame_path in temp_frame_paths: temp_frame = cv2.imread(temp_frame_path) try: result = process_frame(source_face, temp_frame) cv2.imwrite(temp_frame_path, result) except Exception as exception: print(exception) pass if progress: progress.update(1) else: for temp_frame_path in temp_frame_paths: temp_frame = cv2.imread(temp_frame_path) try: result = process_frame_v2(temp_frame, temp_frame_path) cv2.imwrite(temp_frame_path, result) except Exception as exception: print(exception) pass if progress: progress.update(1) def process_image(source_path: str, target_path: str, output_path: str) -> None: if not modules.globals.map_faces: source_face = get_one_face(cv2.imread(source_path)) target_frame = cv2.imread(target_path) result = process_frame(source_face, target_frame) cv2.imwrite(output_path, result) else: if modules.globals.many_faces: update_status( "Many faces enabled. Using first source image. Progressing...", NAME ) target_frame = cv2.imread(output_path) result = process_frame_v2(target_frame) cv2.imwrite(output_path, result) def process_video(source_path: str, temp_frame_paths: List[str]) -> None: if modules.globals.map_faces and modules.globals.many_faces: update_status( "Many faces enabled. Using first source image. Progressing...", NAME ) modules.processors.frame.core.process_video( source_path, temp_frame_paths, process_frames ) def create_lower_mouth_mask( face: Face, frame: Frame ) -> (np.ndarray, np.ndarray, tuple, np.ndarray): mask = np.zeros(frame.shape[:2], dtype=np.uint8) mouth_cutout = None landmarks = face.landmark_2d_106 if landmarks is not None: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 lower_lip_order = [ 65, 66, 62, 70, 69, 18, 19, 20, 21, 22, 23, 24, 0, 8, 7, 6, 5, 4, 3, 2, 65, ] lower_lip_landmarks = landmarks[lower_lip_order].astype( np.float32 ) # Use float for precise calculations # Calculate the center of the landmarks center = np.mean(lower_lip_landmarks, axis=0) # Expand the landmarks outward expansion_factor = ( 1 + modules.globals.mask_down_size ) # Adjust this for more or less expansion expanded_landmarks = (lower_lip_landmarks - center) * expansion_factor + center # Extend the top lip part toplip_indices = [ 20, 0, 1, 2, 3, 4, 5, ] # Indices for landmarks 2, 65, 66, 62, 70, 69, 18 toplip_extension = ( modules.globals.mask_size * 0.5 ) # Adjust this factor to control the extension for idx in toplip_indices: direction = expanded_landmarks[idx] - center direction = direction / np.linalg.norm(direction) expanded_landmarks[idx] += direction * toplip_extension # Extend the bottom part (chin area) chin_indices = [ 11, 12, 13, 14, 15, 16, ] # Indices for landmarks 21, 22, 23, 24, 0, 8 chin_extension = 2 * 0.2 # Adjust this factor to control the extension for idx in chin_indices: expanded_landmarks[idx][1] += ( expanded_landmarks[idx][1] - center[1] ) * chin_extension # Convert back to integer coordinates expanded_landmarks = expanded_landmarks.astype(np.int32) # Calculate bounding box for the expanded lower mouth min_x, min_y = np.min(expanded_landmarks, axis=0) max_x, max_y = np.max(expanded_landmarks, axis=0) # Add some padding to the bounding box padding = int((max_x - min_x) * 0.1) # 10% padding min_x = max(0, min_x - padding) min_y = max(0, min_y - padding) max_x = min(frame.shape[1], max_x + padding) max_y = min(frame.shape[0], max_y + padding) # Ensure the bounding box dimensions are valid if max_x <= min_x or max_y <= min_y: if (max_x - min_x) <= 1: max_x = min_x + 1 if (max_y - min_y) <= 1: max_y = min_y + 1 # Create the mask mask_roi = np.zeros((max_y - min_y, max_x - min_x), dtype=np.uint8) cv2.fillPoly(mask_roi, [expanded_landmarks - [min_x, min_y]], 255) # Apply Gaussian blur to soften the mask edges mask_roi = cv2.GaussianBlur(mask_roi, (15, 15), 5) # Place the mask ROI in the full-sized mask mask[min_y:max_y, min_x:max_x] = mask_roi # Extract the masked area from the frame mouth_cutout = frame[min_y:max_y, min_x:max_x].copy() # Return the expanded lower lip polygon in original frame coordinates lower_lip_polygon = expanded_landmarks return mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon def draw_mouth_mask_visualization( frame: Frame, face: Face, mouth_mask_data: tuple ) -> Frame: landmarks = face.landmark_2d_106 if landmarks is not None and mouth_mask_data is not None: mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon = ( mouth_mask_data ) vis_frame = frame.copy() # Ensure coordinates are within frame bounds height, width = vis_frame.shape[:2] min_x, min_y = max(0, min_x), max(0, min_y) max_x, max_y = min(width, max_x), min(height, max_y) # Adjust mask to match the region size mask_region = mask[0 : max_y - min_y, 0 : max_x - min_x] # Remove the color mask overlay # color_mask = cv2.applyColorMap((mask_region * 255).astype(np.uint8), cv2.COLORMAP_JET) # Ensure shapes match before blending vis_region = vis_frame[min_y:max_y, min_x:max_x] # Remove blending with color_mask # if vis_region.shape[:2] == color_mask.shape[:2]: # blended = cv2.addWeighted(vis_region, 0.7, color_mask, 0.3, 0) # vis_frame[min_y:max_y, min_x:max_x] = blended # Draw the lower lip polygon cv2.polylines(vis_frame, [lower_lip_polygon], True, (0, 255, 0), 2) # Remove the red box # cv2.rectangle(vis_frame, (min_x, min_y), (max_x, max_y), (0, 0, 255), 2) # Visualize the feathered mask feather_amount = max( 1, min( 30, (max_x - min_x) // modules.globals.mask_feather_ratio, (max_y - min_y) // modules.globals.mask_feather_ratio, ), ) # Ensure kernel size is odd kernel_size = 2 * feather_amount + 1 feathered_mask = cv2.GaussianBlur( mask_region.astype(float), (kernel_size, kernel_size), 0 ) feathered_mask = (feathered_mask / feathered_mask.max() * 255).astype(np.uint8) # Remove the feathered mask color overlay # color_feathered_mask = cv2.applyColorMap(feathered_mask, cv2.COLORMAP_VIRIDIS) # Ensure shapes match before blending feathered mask # if vis_region.shape == color_feathered_mask.shape: # blended_feathered = cv2.addWeighted(vis_region, 0.7, color_feathered_mask, 0.3, 0) # vis_frame[min_y:max_y, min_x:max_x] = blended_feathered # Add labels cv2.putText( vis_frame, "Lower Mouth Mask", (min_x, min_y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1, ) cv2.putText( vis_frame, "Feathered Mask", (min_x, max_y + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1, ) return vis_frame return frame def apply_mouth_area( frame: np.ndarray, mouth_cutout: np.ndarray, mouth_box: tuple, face_mask: np.ndarray, mouth_polygon: np.ndarray, ) -> np.ndarray: min_x, min_y, max_x, max_y = mouth_box box_width = max_x - min_x box_height = max_y - min_y if ( mouth_cutout is None or box_width is None or box_height is None or face_mask is None or mouth_polygon is None ): return frame try: resized_mouth_cutout = cv2.resize(mouth_cutout, (box_width, box_height)) roi = frame[min_y:max_y, min_x:max_x] if roi.shape != resized_mouth_cutout.shape: resized_mouth_cutout = cv2.resize( resized_mouth_cutout, (roi.shape[1], roi.shape[0]) ) color_corrected_mouth = apply_color_transfer(resized_mouth_cutout, roi) # Use the provided mouth polygon to create the mask polygon_mask = np.zeros(roi.shape[:2], dtype=np.uint8) adjusted_polygon = mouth_polygon - [min_x, min_y] cv2.fillPoly(polygon_mask, [adjusted_polygon], 255) # Apply feathering to the polygon mask feather_amount = min( 30, box_width // modules.globals.mask_feather_ratio, box_height // modules.globals.mask_feather_ratio, ) feathered_mask = cv2.GaussianBlur( polygon_mask.astype(float), (0, 0), feather_amount ) feathered_mask = feathered_mask / feathered_mask.max() face_mask_roi = face_mask[min_y:max_y, min_x:max_x] combined_mask = feathered_mask * (face_mask_roi / 255.0) combined_mask = combined_mask[:, :, np.newaxis] blended = ( color_corrected_mouth * combined_mask + roi * (1 - combined_mask) ).astype(np.uint8) # Apply face mask to blended result face_mask_3channel = ( np.repeat(face_mask_roi[:, :, np.newaxis], 3, axis=2) / 255.0 ) final_blend = blended * face_mask_3channel + roi * (1 - face_mask_3channel) frame[min_y:max_y, min_x:max_x] = final_blend.astype(np.uint8) except Exception as e: pass return frame def create_face_mask(face: Face, frame: Frame) -> np.ndarray: mask = np.zeros(frame.shape[:2], dtype=np.uint8) landmarks = face.landmark_2d_106 if landmarks is not None: # Convert landmarks to int32 landmarks = landmarks.astype(np.int32) # Extract facial features right_side_face = landmarks[0:16] left_side_face = landmarks[17:32] right_eye = landmarks[33:42] right_eye_brow = landmarks[43:51] left_eye = landmarks[87:96] left_eye_brow = landmarks[97:105] # Calculate forehead extension right_eyebrow_top = np.min(right_eye_brow[:, 1]) left_eyebrow_top = np.min(left_eye_brow[:, 1]) eyebrow_top = min(right_eyebrow_top, left_eyebrow_top) face_top = np.min([right_side_face[0, 1], left_side_face[-1, 1]]) forehead_height = face_top - eyebrow_top extended_forehead_height = int(forehead_height * 5.0) # Extend by 50% # Create forehead points forehead_left = right_side_face[0].copy() forehead_right = left_side_face[-1].copy() forehead_left[1] -= extended_forehead_height forehead_right[1] -= extended_forehead_height # Combine all points to create the face outline face_outline = np.vstack( [ [forehead_left], right_side_face, left_side_face[ ::-1 ], # Reverse left side to create a continuous outline [forehead_right], ] ) # Calculate padding padding = int( np.linalg.norm(right_side_face[0] - left_side_face[-1]) * 0.05 ) # 5% of face width # Create a slightly larger convex hull for padding hull = cv2.convexHull(face_outline) hull_padded = [] for point in hull: x, y = point[0] center = np.mean(face_outline, axis=0) direction = np.array([x, y]) - center direction = direction / np.linalg.norm(direction) padded_point = np.array([x, y]) + direction * padding hull_padded.append(padded_point) hull_padded = np.array(hull_padded, dtype=np.int32) # Fill the padded convex hull cv2.fillConvexPoly(mask, hull_padded, 255) # Smooth the mask edges mask = cv2.GaussianBlur(mask, (5, 5), 3) return mask def apply_color_transfer(source, target): """ Apply color transfer from target to source image """ source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype("float32") target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype("float32") source_mean, source_std = cv2.meanStdDev(source) target_mean, target_std = cv2.meanStdDev(target) # Reshape mean and std to be broadcastable source_mean = source_mean.reshape(1, 1, 3) source_std = source_std.reshape(1, 1, 3) target_mean = target_mean.reshape(1, 1, 3) target_std = target_std.reshape(1, 1, 3) # Perform the color transfer source = (source - source_mean) * (target_std / source_std) + target_mean return cv2.cvtColor(np.clip(source, 0, 255).astype("uint8"), cv2.COLOR_LAB2BGR) def create_eyes_mask(face: Face, frame: Frame) -> (np.ndarray, np.ndarray, tuple, np.ndarray): mask = np.zeros(frame.shape[:2], dtype=np.uint8) eyes_cutout = None landmarks = face.landmark_2d_106 if landmarks is not None: # Left eye landmarks (87-96) and right eye landmarks (33-42) left_eye = landmarks[87:96] right_eye = landmarks[33:42] # Calculate centers and dimensions for each eye left_eye_center = np.mean(left_eye, axis=0).astype(np.int32) right_eye_center = np.mean(right_eye, axis=0).astype(np.int32) # Calculate eye dimensions def get_eye_dimensions(eye_points): x_coords = eye_points[:, 0] y_coords = eye_points[:, 1] width = int((np.max(x_coords) - np.min(x_coords)) * (1 + modules.globals.mask_down_size)) height = int((np.max(y_coords) - np.min(y_coords)) * (1 + modules.globals.mask_down_size)) return width, height left_width, left_height = get_eye_dimensions(left_eye) right_width, right_height = get_eye_dimensions(right_eye) # Add extra padding padding = int(max(left_width, right_width) * 0.2) # Calculate bounding box for both eyes min_x = min(left_eye_center[0] - left_width//2, right_eye_center[0] - right_width//2) - padding max_x = max(left_eye_center[0] + left_width//2, right_eye_center[0] + right_width//2) + padding min_y = min(left_eye_center[1] - left_height//2, right_eye_center[1] - right_height//2) - padding max_y = max(left_eye_center[1] + left_height//2, right_eye_center[1] + right_height//2) + padding # Ensure coordinates are within frame bounds min_x = max(0, min_x) min_y = max(0, min_y) max_x = min(frame.shape[1], max_x) max_y = min(frame.shape[0], max_y) # Create mask for the eyes region mask_roi = np.zeros((max_y - min_y, max_x - min_x), dtype=np.uint8) # Draw ellipses for both eyes left_center = (left_eye_center[0] - min_x, left_eye_center[1] - min_y) right_center = (right_eye_center[0] - min_x, right_eye_center[1] - min_y) # Calculate axes lengths (half of width and height) left_axes = (left_width//2, left_height//2) right_axes = (right_width//2, right_height//2) # Draw filled ellipses cv2.ellipse(mask_roi, left_center, left_axes, 0, 0, 360, 255, -1) cv2.ellipse(mask_roi, right_center, right_axes, 0, 0, 360, 255, -1) # Apply Gaussian blur to soften mask edges mask_roi = cv2.GaussianBlur(mask_roi, (15, 15), 5) # Place the mask ROI in the full-sized mask mask[min_y:max_y, min_x:max_x] = mask_roi # Extract the masked area from the frame eyes_cutout = frame[min_y:max_y, min_x:max_x].copy() # Create polygon points for visualization def create_ellipse_points(center, axes): t = np.linspace(0, 2*np.pi, 32) x = center[0] + axes[0] * np.cos(t) y = center[1] + axes[1] * np.sin(t) return np.column_stack((x, y)).astype(np.int32) # Generate points for both ellipses left_points = create_ellipse_points((left_eye_center[0], left_eye_center[1]), (left_width//2, left_height//2)) right_points = create_ellipse_points((right_eye_center[0], right_eye_center[1]), (right_width//2, right_height//2)) # Combine points for both eyes eyes_polygon = np.vstack([left_points, right_points]) return mask, eyes_cutout, (min_x, min_y, max_x, max_y), eyes_polygon def apply_eyes_area( frame: np.ndarray, eyes_cutout: np.ndarray, eyes_box: tuple, face_mask: np.ndarray, eyes_polygon: np.ndarray, ) -> np.ndarray: min_x, min_y, max_x, max_y = eyes_box box_width = max_x - min_x box_height = max_y - min_y if ( eyes_cutout is None or box_width is None or box_height is None or face_mask is None or eyes_polygon is None ): return frame try: resized_eyes_cutout = cv2.resize(eyes_cutout, (box_width, box_height)) roi = frame[min_y:max_y, min_x:max_x] if roi.shape != resized_eyes_cutout.shape: resized_eyes_cutout = cv2.resize( resized_eyes_cutout, (roi.shape[1], roi.shape[0]) ) color_corrected_eyes = apply_color_transfer(resized_eyes_cutout, roi) # Create mask for both eyes polygon_mask = np.zeros(roi.shape[:2], dtype=np.uint8) # Split points for left and right eyes mid_point = len(eyes_polygon) // 2 left_eye_points = eyes_polygon[:mid_point] - [min_x, min_y] right_eye_points = eyes_polygon[mid_point:] - [min_x, min_y] # Draw filled ellipses using points left_rect = cv2.minAreaRect(left_eye_points) right_rect = cv2.minAreaRect(right_eye_points) # Convert rect to ellipse parameters def rect_to_ellipse_params(rect): center = rect[0] size = rect[1] angle = rect[2] return (int(center[0]), int(center[1])), (int(size[0]/2), int(size[1]/2)), angle # Draw filled ellipses left_params = rect_to_ellipse_params(left_rect) right_params = rect_to_ellipse_params(right_rect) cv2.ellipse(polygon_mask, left_params[0], left_params[1], left_params[2], 0, 360, 255, -1) cv2.ellipse(polygon_mask, right_params[0], right_params[1], right_params[2], 0, 360, 255, -1) # Apply feathering feather_amount = min( 30, box_width // modules.globals.mask_feather_ratio, box_height // modules.globals.mask_feather_ratio, ) feathered_mask = cv2.GaussianBlur( polygon_mask.astype(float), (0, 0), feather_amount ) feathered_mask = feathered_mask / feathered_mask.max() face_mask_roi = face_mask[min_y:max_y, min_x:max_x] combined_mask = feathered_mask * (face_mask_roi / 255.0) combined_mask = combined_mask[:, :, np.newaxis] blended = ( color_corrected_eyes * combined_mask + roi * (1 - combined_mask) ).astype(np.uint8) # Apply face mask to blended result face_mask_3channel = ( np.repeat(face_mask_roi[:, :, np.newaxis], 3, axis=2) / 255.0 ) final_blend = blended * face_mask_3channel + roi * (1 - face_mask_3channel) frame[min_y:max_y, min_x:max_x] = final_blend.astype(np.uint8) except Exception as e: pass return frame def draw_eyes_mask_visualization( frame: Frame, face: Face, eyes_mask_data: tuple ) -> Frame: landmarks = face.landmark_2d_106 if landmarks is not None and eyes_mask_data is not None: mask, eyes_cutout, (min_x, min_y, max_x, max_y), eyes_polygon = eyes_mask_data vis_frame = frame.copy() # Ensure coordinates are within frame bounds height, width = vis_frame.shape[:2] min_x, min_y = max(0, min_x), max(0, min_y) max_x, max_y = min(width, max_x), min(height, max_y) # Draw the eyes ellipses mid_point = len(eyes_polygon) // 2 left_points = eyes_polygon[:mid_point] right_points = eyes_polygon[mid_point:] try: # Fit ellipses to points - need at least 5 points if len(left_points) >= 5 and len(right_points) >= 5: # Convert points to the correct format for ellipse fitting left_points = left_points.astype(np.float32) right_points = right_points.astype(np.float32) # Fit ellipses left_ellipse = cv2.fitEllipse(left_points) right_ellipse = cv2.fitEllipse(right_points) # Draw the ellipses cv2.ellipse(vis_frame, left_ellipse, (0, 255, 0), 2) cv2.ellipse(vis_frame, right_ellipse, (0, 255, 0), 2) except Exception as e: # If ellipse fitting fails, draw simple rectangles as fallback left_rect = cv2.boundingRect(left_points) right_rect = cv2.boundingRect(right_points) cv2.rectangle(vis_frame, (left_rect[0], left_rect[1]), (left_rect[0] + left_rect[2], left_rect[1] + left_rect[3]), (0, 255, 0), 2) cv2.rectangle(vis_frame, (right_rect[0], right_rect[1]), (right_rect[0] + right_rect[2], right_rect[1] + right_rect[3]), (0, 255, 0), 2) # Add label cv2.putText( vis_frame, "Eyes Mask", (min_x, min_y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1, ) return vis_frame return frame def create_eyebrows_mask(face: Face, frame: Frame) -> (np.ndarray, np.ndarray, tuple, np.ndarray): mask = np.zeros(frame.shape[:2], dtype=np.uint8) eyebrows_cutout = None landmarks = face.landmark_2d_106 if landmarks is not None: # Left eyebrow landmarks (97-105) and right eyebrow landmarks (43-51) left_eyebrow = landmarks[97:105].astype(np.float32) right_eyebrow = landmarks[43:51].astype(np.float32) # Calculate centers and dimensions for each eyebrow left_center = np.mean(left_eyebrow, axis=0) right_center = np.mean(right_eyebrow, axis=0) # Calculate bounding box with padding all_points = np.vstack([left_eyebrow, right_eyebrow]) min_x = np.min(all_points[:, 0]) - 25 max_x = np.max(all_points[:, 0]) + 25 min_y = np.min(all_points[:, 1]) - 20 max_y = np.max(all_points[:, 1]) + 15 # Ensure coordinates are within frame bounds min_x = max(0, int(min_x)) min_y = max(0, int(min_y)) max_x = min(frame.shape[1], int(max_x)) max_y = min(frame.shape[0], int(max_y)) # Create mask for the eyebrows region mask_roi = np.zeros((max_y - min_y, max_x - min_x), dtype=np.uint8) try: # Convert points to local coordinates left_local = left_eyebrow - [min_x, min_y] right_local = right_eyebrow - [min_x, min_y] def create_curved_eyebrow(points): if len(points) >= 5: # Sort points by x-coordinate sorted_idx = np.argsort(points[:, 0]) sorted_points = points[sorted_idx] # Calculate dimensions x_min, y_min = np.min(sorted_points, axis=0) x_max, y_max = np.max(sorted_points, axis=0) width = x_max - x_min height = y_max - y_min # Create more points for smoother curve num_points = 50 x = np.linspace(x_min, x_max, num_points) # Fit cubic curve through points for more natural arch coeffs = np.polyfit(sorted_points[:, 0], sorted_points[:, 1], 3) y = np.polyval(coeffs, x) # Create points for top and bottom curves with varying offsets top_offset = np.linspace(height * 0.4, height * 0.3, num_points) # Varying offset for more natural shape bottom_offset = np.linspace(height * 0.2, height * 0.15, num_points) # Add some randomness to the offsets for more natural look top_offset += np.random.normal(0, height * 0.02, num_points) bottom_offset += np.random.normal(0, height * 0.01, num_points) # Smooth the offsets top_offset = cv2.GaussianBlur(top_offset.reshape(-1, 1), (1, 3), 1).reshape(-1) bottom_offset = cv2.GaussianBlur(bottom_offset.reshape(-1, 1), (1, 3), 1).reshape(-1) top_curve = y - top_offset bottom_curve = y + bottom_offset # Create curved endpoints end_points = 5 start_curve = np.column_stack(( np.linspace(x[0] - width * 0.05, x[0], end_points), np.linspace(bottom_curve[0], top_curve[0], end_points) )) end_curve = np.column_stack(( np.linspace(x[-1], x[-1] + width * 0.05, end_points), np.linspace(bottom_curve[-1], top_curve[-1], end_points) )) # Combine all points to form a smooth contour contour_points = np.vstack([ start_curve, np.column_stack((x, top_curve)), end_curve, np.column_stack((x[::-1], bottom_curve[::-1])) ]) # Add padding and smooth the shape center = np.mean(contour_points, axis=0) vectors = contour_points - center padded_points = center + vectors * 1.2 # 20% padding # Convert to integer coordinates and draw cv2.fillPoly(mask_roi, [padded_points.astype(np.int32)], 255) return padded_points return points # Generate and draw eyebrow shapes left_shape = create_curved_eyebrow(left_local) right_shape = create_curved_eyebrow(right_local) # Apply multi-stage blurring for natural feathering # First, strong Gaussian blur for initial softening mask_roi = cv2.GaussianBlur(mask_roi, (21, 21), 7) # Second, medium blur for transition areas mask_roi = cv2.GaussianBlur(mask_roi, (11, 11), 3) # Finally, light blur for fine details mask_roi = cv2.GaussianBlur(mask_roi, (5, 5), 1) # Normalize mask values mask_roi = cv2.normalize(mask_roi, None, 0, 255, cv2.NORM_MINMAX) # Place the mask ROI in the full-sized mask mask[min_y:max_y, min_x:max_x] = mask_roi # Extract the masked area from the frame eyebrows_cutout = frame[min_y:max_y, min_x:max_x].copy() # Combine points for visualization eyebrows_polygon = np.vstack([ left_shape + [min_x, min_y], right_shape + [min_x, min_y] ]).astype(np.int32) except Exception as e: # Fallback to simple polygons if curve fitting fails left_local = left_eyebrow - [min_x, min_y] right_local = right_eyebrow - [min_x, min_y] cv2.fillPoly(mask_roi, [left_local.astype(np.int32)], 255) cv2.fillPoly(mask_roi, [right_local.astype(np.int32)], 255) mask_roi = cv2.GaussianBlur(mask_roi, (21, 21), 7) mask[min_y:max_y, min_x:max_x] = mask_roi eyebrows_cutout = frame[min_y:max_y, min_x:max_x].copy() eyebrows_polygon = np.vstack([left_eyebrow, right_eyebrow]).astype(np.int32) return mask, eyebrows_cutout, (min_x, min_y, max_x, max_y), eyebrows_polygon def apply_eyebrows_area( frame: np.ndarray, eyebrows_cutout: np.ndarray, eyebrows_box: tuple, face_mask: np.ndarray, eyebrows_polygon: np.ndarray, ) -> np.ndarray: min_x, min_y, max_x, max_y = eyebrows_box box_width = max_x - min_x box_height = max_y - min_y if ( eyebrows_cutout is None or box_width is None or box_height is None or face_mask is None or eyebrows_polygon is None ): return frame try: resized_eyebrows_cutout = cv2.resize(eyebrows_cutout, (box_width, box_height)) roi = frame[min_y:max_y, min_x:max_x] if roi.shape != resized_eyebrows_cutout.shape: resized_eyebrows_cutout = cv2.resize( resized_eyebrows_cutout, (roi.shape[1], roi.shape[0]) ) color_corrected_eyebrows = apply_color_transfer(resized_eyebrows_cutout, roi) # Create mask for both eyebrows polygon_mask = np.zeros(roi.shape[:2], dtype=np.uint8) # Split points for left and right eyebrows mid_point = len(eyebrows_polygon) // 2 left_points = eyebrows_polygon[:mid_point] - [min_x, min_y] right_points = eyebrows_polygon[mid_point:] - [min_x, min_y] # Draw filled polygons cv2.fillPoly(polygon_mask, [left_points], 255) cv2.fillPoly(polygon_mask, [right_points], 255) # Apply strong initial feathering polygon_mask = cv2.GaussianBlur(polygon_mask, (21, 21), 7) # Apply additional feathering feather_amount = min( 30, box_width // modules.globals.mask_feather_ratio, box_height // modules.globals.mask_feather_ratio, ) feathered_mask = cv2.GaussianBlur( polygon_mask.astype(float), (0, 0), feather_amount ) feathered_mask = feathered_mask / feathered_mask.max() # Apply additional smoothing to the mask edges feathered_mask = cv2.GaussianBlur(feathered_mask, (5, 5), 1) face_mask_roi = face_mask[min_y:max_y, min_x:max_x] combined_mask = feathered_mask * (face_mask_roi / 255.0) combined_mask = combined_mask[:, :, np.newaxis] blended = ( color_corrected_eyebrows * combined_mask + roi * (1 - combined_mask) ).astype(np.uint8) # Apply face mask to blended result face_mask_3channel = ( np.repeat(face_mask_roi[:, :, np.newaxis], 3, axis=2) / 255.0 ) final_blend = blended * face_mask_3channel + roi * (1 - face_mask_3channel) frame[min_y:max_y, min_x:max_x] = final_blend.astype(np.uint8) except Exception as e: pass return frame def draw_eyebrows_mask_visualization( frame: Frame, face: Face, eyebrows_mask_data: tuple ) -> Frame: landmarks = face.landmark_2d_106 if landmarks is not None and eyebrows_mask_data is not None: mask, eyebrows_cutout, (min_x, min_y, max_x, max_y), eyebrows_polygon = eyebrows_mask_data vis_frame = frame.copy() # Ensure coordinates are within frame bounds height, width = vis_frame.shape[:2] min_x, min_y = max(0, min_x), max(0, min_y) max_x, max_y = min(width, max_x), min(height, max_y) # Draw the eyebrows curves mid_point = len(eyebrows_polygon) // 2 left_points = eyebrows_polygon[:mid_point] right_points = eyebrows_polygon[mid_point:] # Draw smooth curves with anti-aliasing cv2.polylines(vis_frame, [left_points], True, (0, 255, 0), 2, cv2.LINE_AA) cv2.polylines(vis_frame, [right_points], True, (0, 255, 0), 2, cv2.LINE_AA) # Add label cv2.putText( vis_frame, "Eyebrows Mask", (min_x, min_y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1, ) return vis_frame return frame