import os import cv2 import threading import platform import torch import modules import numpy as np from typing import Any, List from modules.core import update_status from modules.face_analyser import get_one_face from modules.typing import Frame, Face from modules.utilities import ( conditional_download, is_image, is_video, ) FACE_ENHANCER = None THREAD_SEMAPHORE = threading.Semaphore() THREAD_LOCK = threading.Lock() NAME = "DLC.FACE-ENHANCER" abs_dir = os.path.dirname(os.path.abspath(__file__)) models_dir = os.path.join( os.path.dirname(os.path.dirname(os.path.dirname(abs_dir))), "models" ) def pre_check() -> bool: """Ensure required model is downloaded.""" download_directory_path = models_dir conditional_download( download_directory_path, [ "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/GFPGANv1.4.pth" ], ) return True def pre_start() -> bool: """Check if target path is valid before starting.""" if not is_image(modules.globals.target_path) and not is_video( modules.globals.target_path ): update_status("Select an image or video for target path.", NAME) return False return True TENSORRT_AVAILABLE = False try: import tensorrt TENSORRT_AVAILABLE = True except ImportError as im: print(f"TensorRT is not available: {im}") except Exception as e: print(f"TensorRT is not available: {e}") def get_face_enhancer() -> Any: """Thread-safe singleton loader for the face enhancer model.""" global FACE_ENHANCER with THREAD_LOCK: if FACE_ENHANCER is None: model_path = os.path.join(models_dir, "GFPGANv1.4.pth") selected_device = "cpu" if TENSORRT_AVAILABLE and torch.cuda.is_available(): selected_device = "cuda" elif torch.cuda.is_available(): selected_device = "cuda" elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available() and platform.system() == "Darwin": selected_device = "mps" # Import GFPGAN only when needed try: import gfpgan FACE_ENHANCER = gfpgan.GFPGANer(model_path=model_path, upscale=1, device=selected_device) except Exception as e: print(f"Failed to load GFPGAN: {e}") FACE_ENHANCER = None return FACE_ENHANCER def enhance_face(temp_frame: Any) -> Any: """Enhance a face in the given frame using GFPGAN.""" with THREAD_SEMAPHORE: enhancer = get_face_enhancer() if enhancer is None: print("Face enhancer model not loaded.") return temp_frame try: _, _, temp_frame = enhancer.enhance(temp_frame, paste_back=True) except Exception as e: print(f"Face enhancement failed: {e}") return temp_frame def process_frame(source_face: Any, temp_frame: Any) -> Any: """Process a single frame for face enhancement.""" target_face = get_one_face(temp_frame) if target_face: temp_frame = enhance_face(temp_frame) return temp_frame def process_frames( source_path: str, temp_frame_paths: List[str], progress: Any = None ) -> None: """Process a list of frames for face enhancement, updating progress and handling errors.""" for temp_frame_path in temp_frame_paths: temp_frame = cv2.imread(temp_frame_path) try: result = process_frame(None, temp_frame) cv2.imwrite(temp_frame_path, result) except Exception as e: print(f"Frame enhancement failed: {e}") finally: if progress: progress.update(1) def process_image(source_path: str, target_path: str, output_path: str) -> None: """Process a single image for face enhancement.""" target_frame = cv2.imread(target_path) result = process_frame(None, target_frame) cv2.imwrite(output_path, result) def process_video(source_path: str, temp_frame_paths: List[str]) -> None: """Process a video for face enhancement.""" modules.processors.frame.core.process_video(None, temp_frame_paths, process_frames) def process_frame_v2(temp_frame: Any) -> Any: """Alternative frame processing for face enhancement (for mapped faces, if needed).""" target_face = get_one_face(temp_frame) if target_face: temp_frame = enhance_face(temp_frame) return temp_frame