from typing import Any, List import cv2 import insightface import threading import numpy as np import modules.globals import logging import modules.processors.frame.core from modules.core import update_status from modules.face_analyser import get_one_face, get_many_faces, default_source_face from modules.typing import Face, Frame from modules.utilities import ( conditional_download, is_image, is_video, ) from modules.cluster_analysis import find_closest_centroid import os FACE_SWAPPER = None THREAD_LOCK = threading.Lock() NAME = "DLC.FACE-SWAPPER" abs_dir = os.path.dirname(os.path.abspath(__file__)) models_dir = os.path.join( os.path.dirname(os.path.dirname(os.path.dirname(abs_dir))), "models" ) def pre_check() -> bool: download_directory_path = abs_dir conditional_download( download_directory_path, [ "https://huggingface.co/hacksider/deep-live-cam/blob/main/inswapper_128_fp16.onnx" ], ) return True def pre_start() -> bool: if not modules.globals.map_faces and not is_image(modules.globals.source_path): update_status("Select an image for source path.", NAME) return False elif not modules.globals.map_faces and not get_one_face( cv2.imread(modules.globals.source_path) ): update_status("No face in source path detected.", NAME) return False if not is_image(modules.globals.target_path) and not is_video( modules.globals.target_path ): update_status("Select an image or video for target path.", NAME) return False return True def get_face_swapper() -> Any: global FACE_SWAPPER with THREAD_LOCK: if FACE_SWAPPER is None: model_path = os.path.join(models_dir, "inswapper_128_fp16.onnx") FACE_SWAPPER = insightface.model_zoo.get_model( model_path, providers=modules.globals.execution_providers ) return FACE_SWAPPER def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame: face_swapper = get_face_swapper() # Simple face swap - maximum FPS swapped_frame = face_swapper.get( temp_frame, target_face, source_face, paste_back=True ) if modules.globals.mouth_mask: # Create a mask for the target face face_mask = create_face_mask(target_face, temp_frame) # Create the mouth mask mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon = ( create_lower_mouth_mask(target_face, temp_frame) ) # Apply the mouth area swapped_frame = apply_mouth_area( swapped_frame, mouth_cutout, mouth_box, face_mask, lower_lip_polygon ) if modules.globals.show_mouth_mask_box: mouth_mask_data = (mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon) swapped_frame = draw_mouth_mask_visualization( swapped_frame, target_face, mouth_mask_data ) return swapped_frame # Simple face position smoothing for stability _last_face_position = None _position_smoothing = 0.7 # Higher = more stable, lower = more responsive def swap_face_stable(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame: """Ultra-fast face swap - maximum FPS priority""" # Skip all complex processing for maximum FPS face_swapper = get_face_swapper() swapped_frame = face_swapper.get(temp_frame, target_face, source_face, paste_back=True) # Skip all post-processing to maximize FPS return swapped_frame def swap_face_ultra_fast(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame: """Fast face swap with mouth mask support""" face_swapper = get_face_swapper() swapped_frame = face_swapper.get(temp_frame, target_face, source_face, paste_back=True) # Add mouth mask functionality back (only if enabled) if modules.globals.mouth_mask: # Create a mask for the target face face_mask = create_face_mask(target_face, temp_frame) # Create the mouth mask mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon = ( create_lower_mouth_mask(target_face, temp_frame) ) # Apply the mouth area swapped_frame = apply_mouth_area( swapped_frame, mouth_cutout, mouth_box, face_mask, lower_lip_polygon ) if modules.globals.show_mouth_mask_box: mouth_mask_data = (mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon) swapped_frame = draw_mouth_mask_visualization( swapped_frame, target_face, mouth_mask_data ) return swapped_frame def improve_forehead_matching(swapped_frame: Frame, source_face: Face, target_face: Face, original_frame: Frame) -> Frame: """Create precise face mask - only swap core facial features (eyes, nose, cheeks, chin)""" try: # Get face landmarks for precise masking if hasattr(target_face, 'landmark_2d_106') and target_face.landmark_2d_106 is not None: landmarks = target_face.landmark_2d_106.astype(np.int32) # Create precise face mask excluding forehead and hair mask = create_precise_face_mask(landmarks, swapped_frame.shape[:2]) if mask is not None: # Apply the precise mask mask_3d = mask[:, :, np.newaxis] / 255.0 # Blend only the core facial features result = (swapped_frame * mask_3d + original_frame * (1 - mask_3d)).astype(np.uint8) return result # Fallback: use bounding box method but exclude forehead bbox = target_face.bbox.astype(int) x1, y1, x2, y2 = bbox # Ensure coordinates are within frame bounds h, w = swapped_frame.shape[:2] x1, y1 = max(0, x1), max(0, y1) x2, y2 = min(w, x2), min(h, y2) if x2 <= x1 or y2 <= y1: return swapped_frame # Exclude forehead area (upper 25% of face) to avoid hair swapping forehead_height = int((y2 - y1) * 0.25) face_start_y = y1 + forehead_height if face_start_y < y2: # Only blend the lower face area (eyes, nose, cheeks, chin) swapped_face_area = swapped_frame[face_start_y:y2, x1:x2] original_face_area = original_frame[face_start_y:y2, x1:x2] # Create soft mask for the face area only mask = np.ones(swapped_face_area.shape[:2], dtype=np.float32) mask = cv2.GaussianBlur(mask, (15, 15), 5) mask = mask[:, :, np.newaxis] # Apply the face area back (keep original forehead/hair) swapped_frame[face_start_y:y2, x1:x2] = swapped_face_area return swapped_frame except Exception: return swapped_frame def create_precise_face_mask(landmarks: np.ndarray, frame_shape: tuple) -> np.ndarray: """Create precise mask for core facial features only (exclude forehead and hair)""" try: mask = np.zeros(frame_shape, dtype=np.uint8) # For 106-point landmarks, use correct indices # Face contour (jawline) - points 0-32 jaw_line = landmarks[0:33] # Eyes area - approximate indices for 106-point model left_eye_area = landmarks[33:42] # Left eye region right_eye_area = landmarks[87:96] # Right eye region # Eyebrows (start from eyebrow level, not forehead) left_eyebrow = landmarks[43:51] # Left eyebrow right_eyebrow = landmarks[97:105] # Right eyebrow # Create face contour that excludes forehead # Start from eyebrow level and go around the face face_contour_points = [] # Add eyebrow points (this will be our "top" instead of forehead) face_contour_points.extend(left_eyebrow) face_contour_points.extend(right_eyebrow) # Add jawline points (bottom and sides of face) face_contour_points.extend(jaw_line) # Convert to numpy array face_contour_points = np.array(face_contour_points) # Create convex hull for the core face area (excluding forehead) hull = cv2.convexHull(face_contour_points) cv2.fillConvexPoly(mask, hull, 255) # Apply Gaussian blur for soft edges mask = cv2.GaussianBlur(mask, (21, 21), 7) return mask except Exception as e: print(f"Error creating precise face mask: {e}") return None def process_frame(source_face: Face, temp_frame: Frame) -> Frame: # Skip color correction for maximum FPS # if modules.globals.color_correction: # temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) if modules.globals.many_faces: many_faces = get_many_faces(temp_frame) if many_faces: for target_face in many_faces: if source_face and target_face: temp_frame = swap_face_ultra_fast(source_face, target_face, temp_frame) else: target_face = get_one_face(temp_frame) if target_face and source_face: temp_frame = swap_face_ultra_fast(source_face, target_face, temp_frame) return temp_frame def process_frame_v2(temp_frame: Frame, temp_frame_path: str = "") -> Frame: if is_image(modules.globals.target_path): if modules.globals.many_faces: source_face = default_source_face() for map in modules.globals.source_target_map: target_face = map["target"]["face"] temp_frame = swap_face(source_face, target_face, temp_frame) elif not modules.globals.many_faces: for map in modules.globals.source_target_map: if "source" in map: source_face = map["source"]["face"] target_face = map["target"]["face"] temp_frame = swap_face(source_face, target_face, temp_frame) elif is_video(modules.globals.target_path): if modules.globals.many_faces: source_face = default_source_face() for map in modules.globals.source_target_map: target_frame = [ f for f in map["target_faces_in_frame"] if f["location"] == temp_frame_path ] for frame in target_frame: for target_face in frame["faces"]: temp_frame = swap_face(source_face, target_face, temp_frame) elif not modules.globals.many_faces: for map in modules.globals.source_target_map: if "source" in map: target_frame = [ f for f in map["target_faces_in_frame"] if f["location"] == temp_frame_path ] source_face = map["source"]["face"] for frame in target_frame: for target_face in frame["faces"]: temp_frame = swap_face(source_face, target_face, temp_frame) else: detected_faces = get_many_faces(temp_frame) if modules.globals.many_faces: if detected_faces: source_face = default_source_face() for target_face in detected_faces: temp_frame = swap_face(source_face, target_face, temp_frame) elif not modules.globals.many_faces: if detected_faces: if len(detected_faces) <= len( modules.globals.simple_map["target_embeddings"] ): for detected_face in detected_faces: closest_centroid_index, _ = find_closest_centroid( modules.globals.simple_map["target_embeddings"], detected_face.normed_embedding, ) temp_frame = swap_face( modules.globals.simple_map["source_faces"][ closest_centroid_index ], detected_face, temp_frame, ) else: detected_faces_centroids = [] for face in detected_faces: detected_faces_centroids.append(face.normed_embedding) i = 0 for target_embedding in modules.globals.simple_map[ "target_embeddings" ]: closest_centroid_index, _ = find_closest_centroid( detected_faces_centroids, target_embedding ) temp_frame = swap_face( modules.globals.simple_map["source_faces"][i], detected_faces[closest_centroid_index], temp_frame, ) i += 1 return temp_frame def process_frames( source_path: str, temp_frame_paths: List[str], progress: Any = None ) -> None: if not modules.globals.map_faces: source_face = get_one_face(cv2.imread(source_path)) for temp_frame_path in temp_frame_paths: temp_frame = cv2.imread(temp_frame_path) try: result = process_frame(source_face, temp_frame) cv2.imwrite(temp_frame_path, result) except Exception as exception: print(exception) pass if progress: progress.update(1) else: for temp_frame_path in temp_frame_paths: temp_frame = cv2.imread(temp_frame_path) try: result = process_frame_v2(temp_frame, temp_frame_path) cv2.imwrite(temp_frame_path, result) except Exception as exception: print(exception) pass if progress: progress.update(1) def process_image(source_path: str, target_path: str, output_path: str) -> None: if not modules.globals.map_faces: source_face = get_one_face(cv2.imread(source_path)) target_frame = cv2.imread(target_path) result = process_frame(source_face, target_frame) cv2.imwrite(output_path, result) else: if modules.globals.many_faces: update_status( "Many faces enabled. Using first source image. Progressing...", NAME ) target_frame = cv2.imread(output_path) result = process_frame_v2(target_frame) cv2.imwrite(output_path, result) def process_video(source_path: str, temp_frame_paths: List[str]) -> None: if modules.globals.map_faces and modules.globals.many_faces: update_status( "Many faces enabled. Using first source image. Progressing...", NAME ) modules.processors.frame.core.process_video( source_path, temp_frame_paths, process_frames ) def create_lower_mouth_mask( face: Face, frame: Frame ) -> (np.ndarray, np.ndarray, tuple, np.ndarray): mask = np.zeros(frame.shape[:2], dtype=np.uint8) mouth_cutout = None landmarks = face.landmark_2d_106 if landmarks is not None: lower_lip_order = [ 65, 66, 62, 70, 69, 18, 19, 20, 21, 22, 23, 24, 0, 8, 7, 6, 5, 4, 3, 2, 65, ] lower_lip_landmarks = landmarks[lower_lip_order].astype(np.float32) center = np.mean(lower_lip_landmarks, axis=0) expansion_factor = 1 + modules.globals.mask_down_size expanded_landmarks = (lower_lip_landmarks - center) * expansion_factor + center toplip_indices = [20, 0, 1, 2, 3, 4, 5] toplip_extension = modules.globals.mask_size * 0.5 for idx in toplip_indices: direction = expanded_landmarks[idx] - center direction = direction / np.linalg.norm(direction) expanded_landmarks[idx] += direction * toplip_extension chin_indices = [11, 12, 13, 14, 15, 16] chin_extension = 2 * 0.2 for idx in chin_indices: expanded_landmarks[idx][1] += ( expanded_landmarks[idx][1] - center[1] ) * chin_extension expanded_landmarks = expanded_landmarks.astype(np.int32) min_x, min_y = np.min(expanded_landmarks, axis=0) max_x, max_y = np.max(expanded_landmarks, axis=0) padding = int((max_x - min_x) * 0.1) min_x = max(0, min_x - padding) min_y = max(0, min_y - padding) max_x = min(frame.shape[1], max_x + padding) max_y = min(frame.shape[0], max_y + padding) if max_x <= min_x or max_y <= min_y: if (max_x - min_x) <= 1: max_x = min_x + 1 if (max_y - min_y) <= 1: max_y = min_y + 1 mask_roi = np.zeros((max_y - min_y, max_x - min_x), dtype=np.uint8) cv2.fillPoly(mask_roi, [expanded_landmarks - [min_x, min_y]], 255) # Improved smoothing for mouth mask mask_roi = cv2.GaussianBlur(mask_roi, (25, 25), 8) mask[min_y:max_y, min_x:max_x] = mask_roi mouth_cutout = frame[min_y:max_y, min_x:max_x].copy() lower_lip_polygon = expanded_landmarks return mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon def draw_mouth_mask_visualization(frame: Frame, face: Face, mouth_mask_data: tuple) -> Frame: landmarks = face.landmark_2d_106 if landmarks is not None and mouth_mask_data is not None: mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon = mouth_mask_data vis_frame = frame.copy() height, width = vis_frame.shape[:2] min_x, min_y = max(0, min_x), max(0, min_y) max_x, max_y = min(width, max_x), min(height, max_y) cv2.polylines(vis_frame, [lower_lip_polygon], True, (0, 255, 0), 2) cv2.putText(vis_frame, "Lower Mouth Mask", (min_x, min_y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) return vis_frame return frame def apply_mouth_area(frame: np.ndarray, mouth_cutout: np.ndarray, mouth_box: tuple, face_mask: np.ndarray, mouth_polygon: np.ndarray) -> np.ndarray: min_x, min_y, max_x, max_y = mouth_box box_width = max_x - min_x box_height = max_y - min_y if mouth_cutout is None or box_width is None or box_height is None or face_mask is None or mouth_polygon is None: return frame try: resized_mouth_cutout = cv2.resize(mouth_cutout, (box_width, box_height)) roi = frame[min_y:max_y, min_x:max_x] if roi.shape != resized_mouth_cutout.shape: resized_mouth_cutout = cv2.resize(resized_mouth_cutout, (roi.shape[1], roi.shape[0])) color_corrected_mouth = apply_color_transfer(resized_mouth_cutout, roi) polygon_mask = np.zeros(roi.shape[:2], dtype=np.uint8) adjusted_polygon = mouth_polygon - [min_x, min_y] cv2.fillPoly(polygon_mask, [adjusted_polygon], 255) # Improved feathering for smoother mouth mask feather_amount = min(35, box_width // modules.globals.mask_feather_ratio, box_height // modules.globals.mask_feather_ratio) feathered_mask = cv2.GaussianBlur(polygon_mask.astype(float), (0, 0), feather_amount * 1.2) feathered_mask = feathered_mask / feathered_mask.max() # Additional smoothing pass for extra softness feathered_mask = cv2.GaussianBlur(feathered_mask, (7, 7), 2) face_mask_roi = face_mask[min_y:max_y, min_x:max_x] combined_mask = feathered_mask * (face_mask_roi / 255.0) combined_mask = combined_mask[:, :, np.newaxis] blended = (color_corrected_mouth * combined_mask + roi * (1 - combined_mask)).astype(np.uint8) face_mask_3channel = np.repeat(face_mask_roi[:, :, np.newaxis], 3, axis=2) / 255.0 final_blend = blended * face_mask_3channel + roi * (1 - face_mask_3channel) frame[min_y:max_y, min_x:max_x] = final_blend.astype(np.uint8) except Exception: pass return frame def create_face_mask(face: Face, frame: Frame) -> np.ndarray: mask = np.zeros(frame.shape[:2], dtype=np.uint8) landmarks = face.landmark_2d_106 if landmarks is not None: landmarks = landmarks.astype(np.int32) right_side_face = landmarks[0:16] left_side_face = landmarks[17:32] right_eye = landmarks[33:42] right_eye_brow = landmarks[43:51] left_eye = landmarks[87:96] left_eye_brow = landmarks[97:105] right_eyebrow_top = np.min(right_eye_brow[:, 1]) left_eyebrow_top = np.min(left_eye_brow[:, 1]) eyebrow_top = min(right_eyebrow_top, left_eyebrow_top) face_top = np.min([right_side_face[0, 1], left_side_face[-1, 1]]) forehead_height = face_top - eyebrow_top extended_forehead_height = int(forehead_height * 5.0) forehead_left = right_side_face[0].copy() forehead_right = left_side_face[-1].copy() forehead_left[1] -= extended_forehead_height forehead_right[1] -= extended_forehead_height face_outline = np.vstack([[forehead_left], right_side_face, left_side_face[::-1], [forehead_right]]) padding = int(np.linalg.norm(right_side_face[0] - left_side_face[-1]) * 0.05) hull = cv2.convexHull(face_outline) hull_padded = [] for point in hull: x, y = point[0] center = np.mean(face_outline, axis=0) direction = np.array([x, y]) - center direction = direction / np.linalg.norm(direction) padded_point = np.array([x, y]) + direction * padding hull_padded.append(padded_point) hull_padded = np.array(hull_padded, dtype=np.int32) cv2.fillConvexPoly(mask, hull_padded, 255) mask = cv2.GaussianBlur(mask, (5, 5), 3) return mask def apply_color_transfer(source, target): source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype("float32") target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype("float32") source_mean, source_std = cv2.meanStdDev(source) target_mean, target_std = cv2.meanStdDev(target) source_mean = source_mean.reshape(1, 1, 3) source_std = source_std.reshape(1, 1, 3) target_mean = target_mean.reshape(1, 1, 3) target_std = target_std.reshape(1, 1, 3) source = (source - source_mean) * (target_std / source_std) + target_mean return cv2.cvtColor(np.clip(source, 0, 255).astype("uint8"), cv2.COLOR_LAB2BGR)