Updates for macOS and coreML / Metal

pull/295/head
Jason Kneen 2024-08-13 13:08:06 +01:00
parent fde8742720
commit 3fcc8d5416
5 changed files with 122 additions and 101 deletions

View File

@ -5,6 +5,8 @@ if any(arg.startswith('--execution-provider') for arg in sys.argv):
os.environ['OMP_NUM_THREADS'] = '1'
# reduce tensorflow log level
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# Force TensorFlow to use Metal
os.environ['TENSORFLOW_METAL'] = '1'
import warnings
from typing import List
import platform
@ -35,9 +37,9 @@ def parse_args() -> None:
program.add_argument('-t', '--target', help='select an target image or video', dest='target_path')
program.add_argument('-o', '--output', help='select output file or directory', dest='output_path')
program.add_argument('--frame-processor', help='pipeline of frame processors', dest='frame_processor', default=['face_swapper'], choices=['face_swapper', 'face_enhancer'], nargs='+')
program.add_argument('--keep-fps', help='keep original fps', dest='keep_fps', action='store_true', default=False)
program.add_argument('--keep-fps', help='keep original fps', dest='keep_fps', action='store_true', default=True)
program.add_argument('--keep-audio', help='keep original audio', dest='keep_audio', action='store_true', default=True)
program.add_argument('--keep-frames', help='keep temporary frames', dest='keep_frames', action='store_true', default=False)
program.add_argument('--keep-frames', help='keep temporary frames', dest='keep_frames', action='store_true', default=True)
program.add_argument('--many-faces', help='process every face', dest='many_faces', action='store_true', default=False)
program.add_argument('--nsfw-filter', help='filter the NSFW image or video', dest='nsfw_filter', action='store_true', default=False)
program.add_argument('--video-encoder', help='adjust output video encoder', dest='video_encoder', default='libx264', choices=['libx264', 'libx265', 'libvpx-vp9'])
@ -45,16 +47,10 @@ def parse_args() -> None:
program.add_argument('--live-mirror', help='The live camera display as you see it in the front-facing camera frame', dest='live_mirror', action='store_true', default=False)
program.add_argument('--live-resizable', help='The live camera frame is resizable', dest='live_resizable', action='store_true', default=False)
program.add_argument('--max-memory', help='maximum amount of RAM in GB', dest='max_memory', type=int, default=suggest_max_memory())
program.add_argument('--execution-provider', help='execution provider', dest='execution_provider', default=['cpu'], choices=suggest_execution_providers(), nargs='+')
program.add_argument('--execution-provider', help='execution provider', dest='execution_provider', default=['coreml'], choices=suggest_execution_providers(), nargs='+')
program.add_argument('--execution-threads', help='number of execution threads', dest='execution_threads', type=int, default=suggest_execution_threads())
program.add_argument('-v', '--version', action='version', version=f'{modules.metadata.name} {modules.metadata.version}')
# register deprecated args
program.add_argument('-f', '--face', help=argparse.SUPPRESS, dest='source_path_deprecated')
program.add_argument('--cpu-cores', help=argparse.SUPPRESS, dest='cpu_cores_deprecated', type=int)
program.add_argument('--gpu-vendor', help=argparse.SUPPRESS, dest='gpu_vendor_deprecated')
program.add_argument('--gpu-threads', help=argparse.SUPPRESS, dest='gpu_threads_deprecated', type=int)
args = program.parse_args()
modules.globals.source_path = args.source_path
@ -72,10 +68,9 @@ def parse_args() -> None:
modules.globals.live_mirror = args.live_mirror
modules.globals.live_resizable = args.live_resizable
modules.globals.max_memory = args.max_memory
modules.globals.execution_providers = decode_execution_providers(args.execution_provider)
modules.globals.execution_providers = ['CoreMLExecutionProvider'] # Force CoreML
modules.globals.execution_threads = args.execution_threads
#for ENHANCER tumbler:
if 'face_enhancer' in args.frame_processor:
modules.globals.fp_ui['face_enhancer'] = True
else:
@ -119,39 +114,22 @@ def suggest_max_memory() -> int:
def suggest_execution_providers() -> List[str]:
return encode_execution_providers(onnxruntime.get_available_providers())
return ['coreml'] # Only suggest CoreML
def suggest_execution_threads() -> int:
if 'DmlExecutionProvider' in modules.globals.execution_providers:
return 1
if 'ROCMExecutionProvider' in modules.globals.execution_providers:
return 1
return 8
def limit_resources() -> None:
# prevent tensorflow memory leak
gpus = tensorflow.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tensorflow.config.experimental.set_memory_growth(gpu, True)
# limit memory usage
if modules.globals.max_memory:
memory = modules.globals.max_memory * 1024 ** 3
if platform.system().lower() == 'darwin':
memory = modules.globals.max_memory * 1024 ** 6
if platform.system().lower() == 'windows':
import ctypes
kernel32 = ctypes.windll.kernel32
kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory))
else:
import resource
resource.setrlimit(resource.RLIMIT_DATA, (memory, memory))
memory = modules.globals.max_memory * 1024 ** 6
import resource
resource.setrlimit(resource.RLIMIT_DATA, (memory, memory))
def release_resources() -> None:
if 'CUDAExecutionProvider' in modules.globals.execution_providers:
torch.cuda.empty_cache()
pass # No need to release CUDA resources
def pre_check() -> bool:
@ -173,15 +151,13 @@ def start() -> None:
for frame_processor in get_frame_processors_modules(modules.globals.frame_processors):
if not frame_processor.pre_start():
return
update_status('Processing...')
# process image to image
if has_image_extension(modules.globals.target_path):
if modules.globals.nsfw_filter and ui.check_and_ignore_nsfw(modules.globals.target_path, destroy):
return
try:
shutil.copy2(modules.globals.target_path, modules.globals.output_path)
except Exception as e:
print("Error copying file:", str(e))
if modules.globals.nsfw == False:
from modules.predicter import predict_image
if predict_image(modules.globals.target_path):
destroy()
shutil.copy2(modules.globals.target_path, modules.globals.output_path)
for frame_processor in get_frame_processors_modules(modules.globals.frame_processors):
update_status('Progressing...', frame_processor.NAME)
frame_processor.process_image(modules.globals.source_path, modules.globals.output_path, modules.globals.output_path)
@ -192,8 +168,10 @@ def start() -> None:
update_status('Processing to image failed!')
return
# process image to videos
if modules.globals.nsfw_filter and ui.check_and_ignore_nsfw(modules.globals.target_path, destroy):
return
if modules.globals.nsfw == False:
from modules.predicter import predict_video
if predict_video(modules.globals.target_path):
destroy()
update_status('Creating temp resources...')
create_temp(modules.globals.target_path)
update_status('Extracting frames...')
@ -202,8 +180,6 @@ def start() -> None:
for frame_processor in get_frame_processors_modules(modules.globals.frame_processors):
update_status('Progressing...', frame_processor.NAME)
frame_processor.process_video(modules.globals.source_path, temp_frame_paths)
release_resources()
# handles fps
if modules.globals.keep_fps:
update_status('Detecting fps...')
fps = detect_fps(modules.globals.target_path)
@ -212,7 +188,6 @@ def start() -> None:
else:
update_status('Creating video with 30.0 fps...')
create_video(modules.globals.target_path)
# handle audio
if modules.globals.keep_audio:
if modules.globals.keep_fps:
update_status('Restoring audio...')
@ -221,7 +196,6 @@ def start() -> None:
restore_audio(modules.globals.target_path, modules.globals.output_path)
else:
move_temp(modules.globals.target_path, modules.globals.output_path)
# clean and validate
clean_temp(modules.globals.target_path)
if is_video(modules.globals.target_path):
update_status('Processing to video succeed!')
@ -243,6 +217,69 @@ def run() -> None:
if not frame_processor.pre_check():
return
limit_resources()
print(f"ONNX Runtime version: {onnxruntime.__version__}")
print(f"Available execution providers: {onnxruntime.get_available_providers()}")
print(f"Selected execution provider: CoreMLExecutionProvider")
# Configure ONNX Runtime to use only CoreML
onnxruntime.set_default_logger_severity(3) # Set to WARNING level
options = onnxruntime.SessionOptions()
options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
# Test CoreML with a dummy model
try:
import numpy as np
from onnx import helper, TensorProto
# Create a simple ONNX model
X = helper.make_tensor_value_info('input', TensorProto.FLOAT, [1, 3, 224, 224])
Y = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 3, 224, 224])
node = helper.make_node('Identity', ['input'], ['output'])
graph = helper.make_graph([node], 'test_model', [X], [Y])
model = helper.make_model(graph)
# Save the model
model_path = 'test_model.onnx'
with open(model_path, 'wb') as f:
f.write(model.SerializeToString())
# Create a CoreML session
session = onnxruntime.InferenceSession(model_path, options, providers=['CoreMLExecutionProvider'])
# Run inference
input_data = np.random.rand(1, 3, 224, 224).astype(np.float32)
output = session.run(None, {'input': input_data})
print("CoreML init successful and being used")
print(f"Input shape: {input_data.shape}, Output shape: {output[0].shape}")
# Clean up
os.remove(model_path)
except Exception as e:
print(f"Error testing CoreML: {str(e)}")
print("The application may not be able to use GPU acceleration")
# Configure TensorFlow to use Metal
try:
tf_devices = tensorflow.config.list_physical_devices()
print("TensorFlow devices:", tf_devices)
if any('GPU' in device.name for device in tf_devices):
print("TensorFlow is using GPU (Metal)")
else:
print("TensorFlow is not using GPU")
except Exception as e:
print(f"Error configuring TensorFlow: {str(e)}")
# Configure PyTorch to use MPS (Metal Performance Shaders)
try:
if torch.backends.mps.is_available():
print("PyTorch is using MPS (Metal Performance Shaders)")
torch.set_default_device('mps')
else:
print("PyTorch MPS is not available")
except Exception as e:
print(f"Error configuring PyTorch: {str(e)}")
if modules.globals.headless:
start()
else:

View File

@ -17,7 +17,7 @@ NAME = 'DLC.FACE-SWAPPER'
def pre_check() -> bool:
download_directory_path = resolve_relative_path('../models')
conditional_download(download_directory_path, ['https://huggingface.co/hacksider/deep-live-cam/blob/main/inswapper_128_fp16.onnx'])
conditional_download(download_directory_path, ['https://huggingface.co/hacksider/deep-live-cam/blob/main/inswapper_128.onnx'])
return True
@ -39,7 +39,7 @@ def get_face_swapper() -> Any:
with THREAD_LOCK:
if FACE_SWAPPER is None:
model_path = resolve_relative_path('../models/inswapper_128_fp16.onnx')
model_path = resolve_relative_path('../models/inswapper_128.onnx')
FACE_SWAPPER = insightface.model_zoo.get_model(model_path, providers=modules.globals.execution_providers)
return FACE_SWAPPER

View File

@ -194,38 +194,6 @@ def select_output_path(start: Callable[[], None]) -> None:
start()
def check_and_ignore_nsfw(target, destroy: Callable = None) -> bool:
''' Check if the target is NSFW.
TODO: Consider to make blur the target.
'''
from numpy import ndarray
from modules.predicter import predict_image, predict_video, predict_frame
if type(target) is str: # image/video file path
check_nsfw = predict_image if has_image_extension(target) else predict_video
elif type(target) is ndarray: # frame object
check_nsfw = predict_frame
if check_nsfw and check_nsfw(target):
if destroy: destroy(to_quit=False) # Do not need to destroy the window frame if the target is NSFW
update_status('Processing ignored!')
return True
else: return False
def fit_image_to_size(image, width: int, height: int):
if width is None and height is None:
return image
h, w, _ = image.shape
ratio_h = 0.0
ratio_w = 0.0
if width > height:
ratio_h = height / h
else:
ratio_w = width / w
ratio = max(ratio_w, ratio_h)
new_size = (int(ratio * w), int(ratio * h))
return cv2.resize(image, dsize=new_size)
def render_image_preview(image_path: str, size: Tuple[int, int]) -> ctk.CTkImage:
image = Image.open(image_path)
if size:
@ -323,7 +291,7 @@ def webcam_preview():
for frame_processor in frame_processors:
temp_frame = frame_processor.process_frame(source_image, temp_frame)
image = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) # Convert the image to RGB format to display it with Tkinter
image = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) # Convert the image to RGB format to display it with Tkinter
image = Image.fromarray(image)
image = ImageOps.contain(image, (temp_frame.shape[1], temp_frame.shape[0]), Image.LANCZOS)
image = ctk.CTkImage(image, size=image.size)

View File

@ -9,6 +9,7 @@ import urllib
from pathlib import Path
from typing import List, Any
from tqdm import tqdm
import cv2
import modules.globals
@ -44,7 +45,19 @@ def detect_fps(target_path: str) -> float:
def extract_frames(target_path: str) -> None:
temp_directory_path = get_temp_directory_path(target_path)
run_ffmpeg(['-i', target_path, '-pix_fmt', 'rgb24', os.path.join(temp_directory_path, '%04d.png')])
cap = cv2.VideoCapture(target_path)
frame_count = 0
while True:
ret, frame = cap.read()
if not ret:
break
# Save the frame
cv2.imwrite(os.path.join(temp_directory_path, f'{frame_count:04d}.png'), frame)
frame_count += 1
cap.release()
def create_video(target_path: str, fps: float = 30.0) -> None:

View File

@ -1,23 +1,26 @@
--extra-index-url https://download.pytorch.org/whl/cu118
# Deep Live Cam requirements
numpy==1.23.5
# Core dependencies
numpy==1.26.4
onnxruntime-silicon==1.16.3
opencv-python==4.8.1.78
onnx==1.16.0
insightface==0.7.3
psutil==5.9.8
tk==0.1.0
customtkinter==5.2.2
pillow==9.5.0
torch==2.0.1+cu118; sys_platform != 'darwin'
torch==2.0.1; sys_platform == 'darwin'
torchvision==0.15.2+cu118; sys_platform != 'darwin'
torchvision==0.15.2; sys_platform == 'darwin'
onnxruntime==1.18.0; sys_platform == 'darwin' and platform_machine != 'arm64'
onnxruntime-silicon==1.16.3; sys_platform == 'darwin' and platform_machine == 'arm64'
onnxruntime-gpu==1.18.0; sys_platform != 'darwin'
tensorflow==2.13.0rc1; sys_platform == 'darwin'
tensorflow==2.12.1; sys_platform != 'darwin'
opennsfw2==0.10.2
protobuf==4.23.2
insightface==0.7.3
torch==2.1.0 # Add the specific version you're using
tensorflow==2.16.1 # Add the specific version you're using
# Image processing
scikit-image==0.24.0
matplotlib==3.9.1.post1
# Machine learning
scikit-learn==1.5.1
# Utilities
tqdm==4.66.4
gfpgan==1.3.8
requests==2.32.3
prettytable==3.11.0
# Optional dependencies (comment out if not needed)
# albumentations==1.4.13
# coloredlogs==15.0.1