Merge 8b61cc691f
into 9086072b8e
commit
31db082f85
|
@ -39,9 +39,12 @@ def parse_args() -> None:
|
|||
program.add_argument('--keep-audio', help='keep original audio', dest='keep_audio', action='store_true', default=True)
|
||||
program.add_argument('--keep-frames', help='keep temporary frames', dest='keep_frames', action='store_true', default=False)
|
||||
program.add_argument('--many-faces', help='process every face', dest='many_faces', action='store_true', default=False)
|
||||
program.add_argument('--color-correction', help='apply color correction to the swapped face', dest='color_correction', action='store_true', default=False) # Added this line back
|
||||
program.add_argument('--nsfw-filter', help='filter the NSFW image or video', dest='nsfw_filter', action='store_true', default=False)
|
||||
program.add_argument('--map-faces', help='map source target faces', dest='map_faces', action='store_true', default=False)
|
||||
program.add_argument('--mouth-mask', help='mask the mouth region', dest='mouth_mask', action='store_true', default=False)
|
||||
program.add_argument('--poisson-blending', help='use Poisson blending for smoother face integration', dest='poisson_blending', action='store_true', default=False)
|
||||
program.add_argument('--preserve-ears', help='attempt to preserve target ears by modifying the blend mask', dest='preserve_ears', action='store_true', default=False)
|
||||
program.add_argument('--video-encoder', help='adjust output video encoder', dest='video_encoder', default='libx264', choices=['libx264', 'libx265', 'libvpx-vp9'])
|
||||
program.add_argument('--video-quality', help='adjust output video quality', dest='video_quality', type=int, default=18, choices=range(52), metavar='[0-51]')
|
||||
program.add_argument('-l', '--lang', help='Ui language', default="en")
|
||||
|
@ -69,7 +72,10 @@ def parse_args() -> None:
|
|||
modules.globals.keep_audio = args.keep_audio
|
||||
modules.globals.keep_frames = args.keep_frames
|
||||
modules.globals.many_faces = args.many_faces
|
||||
modules.globals.color_correction = args.color_correction
|
||||
modules.globals.mouth_mask = args.mouth_mask
|
||||
modules.globals.use_poisson_blending = args.poisson_blending
|
||||
modules.globals.preserve_target_ears = args.preserve_ears
|
||||
modules.globals.nsfw_filter = args.nsfw_filter
|
||||
modules.globals.map_faces = args.map_faces
|
||||
modules.globals.video_encoder = args.video_encoder
|
||||
|
|
|
@ -41,3 +41,10 @@ show_mouth_mask_box = False
|
|||
mask_feather_ratio = 8
|
||||
mask_down_size = 0.50
|
||||
mask_size = 1
|
||||
use_poisson_blending = False # Added for Poisson blending
|
||||
poisson_blending_feather_amount = 5 # Feathering for the mask before Poisson blending
|
||||
preserve_target_ears = False # Flag to enable preserving target's ears
|
||||
ear_width_ratio = 0.18 # Width of the ear exclusion box as a ratio of face bbox width
|
||||
ear_height_ratio = 0.35 # Height of the ear exclusion box as a ratio of face bbox height
|
||||
ear_vertical_offset_ratio = 0.20 # Vertical offset of the ear box from top of face bbox
|
||||
ear_horizontal_overlap_ratio = 0.03 # How much the ear exclusion zone can overlap into the face bbox
|
||||
|
|
|
@ -71,10 +71,43 @@ def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
|
|||
face_swapper = get_face_swapper()
|
||||
|
||||
# Apply the face swap
|
||||
swapped_frame = face_swapper.get(
|
||||
swapped_frame_result = face_swapper.get( # Renamed to avoid confusion
|
||||
temp_frame, target_face, source_face, paste_back=True
|
||||
)
|
||||
|
||||
# Ensure swapped_frame_result is not None and is a valid image
|
||||
if swapped_frame_result is None or not isinstance(swapped_frame_result, np.ndarray):
|
||||
logging.error("Face swap operation failed or returned invalid result.")
|
||||
return temp_frame # Return original frame if swap failed
|
||||
|
||||
# Color Correction
|
||||
if modules.globals.color_correction:
|
||||
# Get the bounding box of the target face to apply color correction
|
||||
# more accurately to the swapped region.
|
||||
# The target_face object should have bbox attribute (x1, y1, x2, y2)
|
||||
if hasattr(target_face, 'bbox'):
|
||||
x1, y1, x2, y2 = target_face.bbox.astype(int)
|
||||
# Ensure coordinates are within frame bounds
|
||||
x1, y1 = max(0, x1), max(0, y1)
|
||||
x2, y2 = min(swapped_frame_result.shape[1], x2), min(swapped_frame_result.shape[0], y2)
|
||||
|
||||
if x1 < x2 and y1 < y2:
|
||||
swapped_face_region = swapped_frame_result[y1:y2, x1:x2]
|
||||
target_face_region_original = temp_frame[y1:y2, x1:x2]
|
||||
|
||||
if swapped_face_region.size > 0 and target_face_region_original.size > 0:
|
||||
corrected_swapped_face_region = apply_histogram_matching_color_correction(swapped_face_region, target_face_region_original)
|
||||
swapped_frame_result[y1:y2, x1:x2] = corrected_swapped_face_region
|
||||
else:
|
||||
# Fallback to full frame color correction if regions are invalid
|
||||
swapped_frame_result = apply_histogram_matching_color_correction(swapped_frame_result, temp_frame)
|
||||
else:
|
||||
# Fallback to full frame color correction if bbox is invalid
|
||||
swapped_frame_result = apply_histogram_matching_color_correction(swapped_frame_result, temp_frame)
|
||||
else:
|
||||
# Fallback to full frame color correction if no bbox
|
||||
swapped_frame_result = apply_histogram_matching_color_correction(swapped_frame_result, temp_frame)
|
||||
|
||||
if modules.globals.mouth_mask:
|
||||
# Create a mask for the target face
|
||||
face_mask = create_face_mask(target_face, temp_frame)
|
||||
|
@ -85,22 +118,136 @@ def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
|
|||
)
|
||||
|
||||
# Apply the mouth area
|
||||
swapped_frame = apply_mouth_area(
|
||||
swapped_frame, mouth_cutout, mouth_box, face_mask, lower_lip_polygon
|
||||
swapped_frame_result = apply_mouth_area(
|
||||
swapped_frame_result, mouth_cutout, mouth_box, face_mask, lower_lip_polygon
|
||||
)
|
||||
|
||||
if modules.globals.show_mouth_mask_box:
|
||||
mouth_mask_data = (mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon)
|
||||
swapped_frame = draw_mouth_mask_visualization(
|
||||
swapped_frame, target_face, mouth_mask_data
|
||||
swapped_frame_result = draw_mouth_mask_visualization(
|
||||
swapped_frame_result, target_face, mouth_mask_data
|
||||
)
|
||||
|
||||
return swapped_frame
|
||||
# Poisson Blending
|
||||
if modules.globals.use_poisson_blending and hasattr(target_face, 'bbox'):
|
||||
# Create a mask for the swapped face region for Poisson blending
|
||||
# This mask should cover the area of the swapped face.
|
||||
# We can use the target_face.bbox and perhaps expand it slightly,
|
||||
# or use a more precise mask from face parsing if available.
|
||||
# For simplicity, using a slightly feathered convex hull of landmarks.
|
||||
|
||||
face_mask_for_blending = np.zeros(temp_frame.shape[:2], dtype=np.uint8)
|
||||
|
||||
# Prioritize using the bounding box for a tighter mask
|
||||
if hasattr(target_face, 'bbox'):
|
||||
x1, y1, x2, y2 = target_face.bbox.astype(int)
|
||||
# Ensure coordinates are within frame bounds
|
||||
x1_b, y1_b = max(0, x1), max(0, y1) # Use different var names to avoid conflict with center calculation
|
||||
x2_b, y2_b = min(temp_frame.shape[1], x2), min(temp_frame.shape[0], y2)
|
||||
|
||||
# Create a rectangular mask based on the bounding box
|
||||
if x1_b < x2_b and y1_b < y2_b:
|
||||
face_mask_for_blending[y1_b:y2_b, x1_b:x2_b] = 255
|
||||
else:
|
||||
logging.warning("Invalid bounding box for Poisson mask. Attempting landmark-based mask.")
|
||||
# Fallback to landmark-based convex hull if bbox is invalid
|
||||
landmarks = target_face.landmark_2d_106 if hasattr(target_face, 'landmark_2d_106') else None
|
||||
if landmarks is not None and len(landmarks) > 0:
|
||||
try:
|
||||
hull_points = cv2.convexHull(landmarks.astype(np.int32))
|
||||
cv2.fillConvexPoly(face_mask_for_blending, hull_points, 255)
|
||||
except Exception as e:
|
||||
logging.error(f"Could not form convex hull for Poisson mask from landmarks: {e}. Blending will be skipped.")
|
||||
else:
|
||||
logging.error("No valid bbox or landmarks for Poisson mask. Blending will be skipped.")
|
||||
else:
|
||||
# Fallback to landmark-based convex hull if no bbox attribute
|
||||
landmarks = target_face.landmark_2d_106 if hasattr(target_face, 'landmark_2d_106') else None
|
||||
if landmarks is not None and len(landmarks) > 0:
|
||||
try:
|
||||
hull_points = cv2.convexHull(landmarks.astype(np.int32))
|
||||
cv2.fillConvexPoly(face_mask_for_blending, hull_points, 255)
|
||||
except Exception as e:
|
||||
logging.error(f"Could not form convex hull for Poisson mask from landmarks (no bbox): {e}. Blending will be skipped.")
|
||||
else:
|
||||
logging.error("No bbox or landmarks available for Poisson mask. Blending will be skipped.")
|
||||
|
||||
# Subtract ear regions if preserve_target_ears is enabled
|
||||
if modules.globals.preserve_target_ears and np.any(face_mask_for_blending > 0):
|
||||
mfx1, mfy1, mfx2, mfy2 = target_face.bbox.astype(int)
|
||||
mfw = mfx2 - mfx1
|
||||
mfh = mfy2 - mfy1
|
||||
|
||||
ear_w = int(mfw * modules.globals.ear_width_ratio)
|
||||
ear_h = int(mfh * modules.globals.ear_height_ratio)
|
||||
ear_v_offset = int(mfh * modules.globals.ear_vertical_offset_ratio)
|
||||
ear_overlap = int(mfw * modules.globals.ear_horizontal_overlap_ratio)
|
||||
|
||||
# Person's Right Ear (image left side of face bbox)
|
||||
# This region in face_mask_for_blending will be set to 0
|
||||
rex1 = max(0, mfx1 - ear_w + ear_overlap)
|
||||
rey1 = max(0, mfy1 + ear_v_offset)
|
||||
rex2 = min(temp_frame.shape[1], mfx1 + ear_overlap) # Extends slightly into face bbox for smoother transition
|
||||
rey2 = min(temp_frame.shape[0], rey1 + ear_h)
|
||||
if rex1 < rex2 and rey1 < rey2:
|
||||
cv2.rectangle(face_mask_for_blending, (rex1, rey1), (rex2, rey2), 0, -1)
|
||||
|
||||
# Person's Left Ear (image right side of face bbox)
|
||||
lex1 = max(0, mfx2 - ear_overlap)
|
||||
ley1 = max(0, mfy1 + ear_v_offset)
|
||||
lex2 = min(temp_frame.shape[1], mfx2 + ear_w - ear_overlap)
|
||||
ley2 = min(temp_frame.shape[0], ley1 + ear_h)
|
||||
if lex1 < lex2 and ley1 < ley2:
|
||||
cv2.rectangle(face_mask_for_blending, (lex1, ley1), (lex2, ley2), 0, -1)
|
||||
|
||||
# Feather the mask to smooth edges for Poisson blending
|
||||
if np.any(face_mask_for_blending > 0): # Only feather if there's a mask
|
||||
feather_amount = modules.globals.poisson_blending_feather_amount
|
||||
if feather_amount > 0:
|
||||
# Ensure kernel size is odd
|
||||
kernel_size = 2 * feather_amount + 1
|
||||
face_mask_for_blending = cv2.GaussianBlur(face_mask_for_blending, (kernel_size, kernel_size), 0)
|
||||
|
||||
# Calculate the center of the target face bbox for seamlessClone
|
||||
if hasattr(target_face, 'bbox'):
|
||||
x1, y1, x2, y2 = target_face.bbox.astype(int)
|
||||
center_x = (x1 + x2) // 2
|
||||
center_y = (y1 + y2) // 2
|
||||
|
||||
# Ensure center is within frame dimensions
|
||||
center_x = np.clip(center_x, 0, temp_frame.shape[1] -1)
|
||||
center_y = np.clip(center_y, 0, temp_frame.shape[0] -1)
|
||||
center = (center_x, center_y)
|
||||
|
||||
# Apply Poisson blending
|
||||
# swapped_frame_result is the source, temp_frame is the destination
|
||||
if np.any(face_mask_for_blending > 0): # Proceed only if mask is not empty
|
||||
try:
|
||||
# Ensure swapped_frame_result and temp_frame are 8-bit 3-channel images
|
||||
if swapped_frame_result.dtype != np.uint8:
|
||||
swapped_frame_result = np.clip(swapped_frame_result, 0, 255).astype(np.uint8)
|
||||
if temp_frame.dtype != np.uint8:
|
||||
temp_frame_uint8 = np.clip(temp_frame, 0, 255).astype(np.uint8)
|
||||
else:
|
||||
temp_frame_uint8 = temp_frame
|
||||
|
||||
swapped_frame_result = cv2.seamlessClone(swapped_frame_result, temp_frame_uint8, face_mask_for_blending, center, cv2.NORMAL_CLONE)
|
||||
except cv2.error as e:
|
||||
logging.error(f"Error during Poisson blending: {e}")
|
||||
# Fallback to non-blended result if seamlessClone fails
|
||||
pass # swapped_frame_result remains as is
|
||||
else:
|
||||
logging.warning("Poisson blending mask is empty. Skipping Poisson blending.")
|
||||
|
||||
return swapped_frame_result
|
||||
|
||||
|
||||
def process_frame(source_face: Face, temp_frame: Frame) -> Frame:
|
||||
if modules.globals.color_correction:
|
||||
temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
|
||||
# The color_correction logic was moved into swap_face.
|
||||
# The initial temp_frame modification `cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)`
|
||||
# was incorrect as it changes the color space of the whole frame before processing,
|
||||
# which is not what we want for color correction of the swapped part.
|
||||
# Histogram matching is now done BGR to BGR.
|
||||
|
||||
if modules.globals.many_faces:
|
||||
many_faces = get_many_faces(temp_frame)
|
||||
|
@ -620,3 +767,37 @@ def apply_color_transfer(source, target):
|
|||
source = (source - source_mean) * (target_std / source_std) + target_mean
|
||||
|
||||
return cv2.cvtColor(np.clip(source, 0, 255).astype("uint8"), cv2.COLOR_LAB2BGR)
|
||||
|
||||
|
||||
def apply_histogram_matching_color_correction(source_img: Frame, target_img: Frame) -> Frame:
|
||||
"""
|
||||
Applies color correction to the source image to match the target image's color distribution
|
||||
using histogram matching on each color channel.
|
||||
"""
|
||||
corrected_img = np.zeros_like(source_img)
|
||||
for i in range(source_img.shape[2]): # Iterate over color channels (B, G, R)
|
||||
source_hist, _ = np.histogram(source_img[:, :, i].flatten(), 256, [0, 256])
|
||||
target_hist, _ = np.histogram(target_img[:, :, i].flatten(), 256, [0, 256])
|
||||
|
||||
# Compute cumulative distribution functions (CDFs)
|
||||
source_cdf = source_hist.cumsum()
|
||||
source_cdf_normalized = source_cdf * source_hist.max() / source_cdf.max() # Normalize
|
||||
|
||||
target_cdf = target_hist.cumsum()
|
||||
target_cdf_normalized = target_cdf * target_hist.max() / target_cdf.max() # Normalize
|
||||
|
||||
# Create lookup table
|
||||
lookup_table = np.zeros(256, 'uint8')
|
||||
|
||||
gj = 0
|
||||
for gi in range(256):
|
||||
while gj < 256 and target_cdf_normalized[gj] < source_cdf_normalized[gi]:
|
||||
gj += 1
|
||||
if gj == 256: # If we reach end of target_cdf, map remaining to max value
|
||||
lookup_table[gi] = 255
|
||||
else:
|
||||
lookup_table[gi] = gj
|
||||
|
||||
corrected_img[:, :, i] = cv2.LUT(source_img[:, :, i], lookup_table)
|
||||
|
||||
return corrected_img
|
||||
|
|
Loading…
Reference in New Issue