sr1
parent
6725edf9b4
commit
0e218f46fd
|
@ -0,0 +1,197 @@
|
|||
import threading
|
||||
import traceback
|
||||
from typing import Any, List
|
||||
import cv2
|
||||
|
||||
import os
|
||||
|
||||
import modules.globals
|
||||
import modules.processors.frame.core
|
||||
from modules.core import update_status
|
||||
from modules.face_analyser import get_one_face
|
||||
from modules.utilities import conditional_download, resolve_relative_path, is_image, is_video
|
||||
import numpy as np
|
||||
|
||||
NAME = 'DLC.SUPER-RESOLUTION'
|
||||
THREAD_SEMAPHORE = threading.Semaphore()
|
||||
|
||||
# Singleton class for Super-Resolution
|
||||
class SuperResolutionModel:
|
||||
_instance = None
|
||||
_lock = threading.Lock()
|
||||
|
||||
def __init__(self, sr_model_path: str = f'ESPCN_x{modules.globals.sr_scale_factor}.pb'):
|
||||
if SuperResolutionModel._instance is not None:
|
||||
raise Exception("This class is a singleton!")
|
||||
self.sr = cv2.dnn_superres.DnnSuperResImpl_create()
|
||||
self.model_path = os.path.join(resolve_relative_path('../models'), sr_model_path)
|
||||
if not os.path.exists(self.model_path):
|
||||
raise FileNotFoundError(f"Super-resolution model not found at {self.model_path}")
|
||||
try:
|
||||
self.sr.readModel(self.model_path)
|
||||
self.sr.setModel("espcn", modules.globals.sr_scale_factor) # Using ESPCN with 2,3 or 4x upscaling
|
||||
except Exception as e:
|
||||
print(f"Error during super-resolution model initialization: {e}")
|
||||
raise e
|
||||
|
||||
@classmethod
|
||||
def get_instance(cls, sr_model_path: str = f'ESPCN_x{modules.globals.sr_scale_factor}.pb'):
|
||||
if cls._instance is None:
|
||||
with cls._lock:
|
||||
if cls._instance is None:
|
||||
try:
|
||||
cls._instance = cls(sr_model_path)
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Failed to initialize SuperResolution: {str(e)}")
|
||||
return cls._instance
|
||||
|
||||
|
||||
def pre_check() -> bool:
|
||||
"""
|
||||
Checks and downloads necessary models before starting the face swapper.
|
||||
"""
|
||||
download_directory_path = resolve_relative_path('../models')
|
||||
# Download the super-resolution model as well
|
||||
conditional_download(download_directory_path, [
|
||||
f'https://huggingface.co/spaces/PabloGabrielSch/AI_Resolution_Upscaler_And_Resizer/resolve/bcd13b766a9499196e8becbe453c4a848673b3b6/models/ESPCN_x{modules.globals.sr_scale_factor}.pb'
|
||||
])
|
||||
return True
|
||||
|
||||
def pre_start() -> bool:
|
||||
if not is_image(modules.globals.source_path):
|
||||
update_status('Select an image for source path.', NAME)
|
||||
return False
|
||||
elif not get_one_face(cv2.imread(modules.globals.source_path)):
|
||||
update_status('No face detected in the source path.', NAME)
|
||||
return False
|
||||
if not is_image(modules.globals.target_path) and not is_video(modules.globals.target_path):
|
||||
update_status('Select an image or video for target path.', NAME)
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def apply_super_resolution(image: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Applies super-resolution to the given image using the provided super-resolver.
|
||||
|
||||
Args:
|
||||
image (np.ndarray): The input image to enhance.
|
||||
sr_model_path (str): ESPCN model path for super-resolution.
|
||||
|
||||
Returns:
|
||||
np.ndarray: The super-resolved image.
|
||||
"""
|
||||
with THREAD_SEMAPHORE:
|
||||
sr_model = SuperResolutionModel.get_instance()
|
||||
|
||||
if sr_model is None:
|
||||
print("Super-resolution model is not initialized.")
|
||||
return image
|
||||
try:
|
||||
upscaled_image = sr_model.sr.upsample(image)
|
||||
return upscaled_image
|
||||
except Exception as e:
|
||||
print(f"Error during super-resolution: {e}")
|
||||
return image
|
||||
|
||||
|
||||
def process_frame(frame: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Processes a single frame by swapping the source face into detected target faces.
|
||||
|
||||
Args:
|
||||
|
||||
frame (np.ndarray): The target frame image.
|
||||
|
||||
Returns:
|
||||
np.ndarray: The processed frame with swapped faces.
|
||||
"""
|
||||
|
||||
# Apply super-resolution to the entire frame
|
||||
frame = apply_super_resolution(frame)
|
||||
|
||||
return frame
|
||||
|
||||
def process_frames(source_path: str, temp_frame_paths: List[str], progress: Any = None) -> None:
|
||||
"""
|
||||
Processes multiple frames by swapping the source face into each target frame.
|
||||
|
||||
Args:
|
||||
source_path (str): Path to the source image.
|
||||
temp_frame_paths (List[str]): List of paths to target frame images.
|
||||
progress (Any, optional): Progress tracker. Defaults to None.
|
||||
"""
|
||||
for idx, temp_frame_path in enumerate(temp_frame_paths):
|
||||
frame = cv2.imread(temp_frame_path)
|
||||
if frame is None:
|
||||
print(f"Failed to load frame from {temp_frame_path}")
|
||||
continue
|
||||
try:
|
||||
result = process_frame(frame)
|
||||
cv2.imwrite(temp_frame_path, result)
|
||||
except Exception as exception:
|
||||
traceback.print_exc()
|
||||
print(f"Error processing frame {temp_frame_path}: {exception}")
|
||||
if progress:
|
||||
progress.update(1)
|
||||
|
||||
def upscale_image(image: np.ndarray, scaling_factor: int = 2) -> np.ndarray:
|
||||
"""
|
||||
Upscales the given image by the specified scaling factor.
|
||||
|
||||
Args:
|
||||
image (np.ndarray): The input image to upscale.
|
||||
scaling_factor (int): The factor by which to upscale the image.
|
||||
|
||||
Returns:
|
||||
np.ndarray: The upscaled image.
|
||||
"""
|
||||
height, width = image.shape[:2]
|
||||
new_size = (width * scaling_factor, height * scaling_factor)
|
||||
upscaled_image = cv2.resize(image, new_size, interpolation=cv2.INTER_CUBIC)
|
||||
return upscaled_image
|
||||
|
||||
def process_image(source_path: str, target_path: str, output_path: str) -> None:
|
||||
"""
|
||||
Processes a single image by swapping the source face into the target image.
|
||||
|
||||
Args:
|
||||
source_path (str): Path to the source image.
|
||||
target_path (str): Path to the target image.
|
||||
output_path (str): Path to save the output image.
|
||||
"""
|
||||
source_image = cv2.imread(source_path)
|
||||
if source_image is None:
|
||||
print(f"Failed to load source image from {source_path}")
|
||||
return
|
||||
|
||||
# Upscale the source image for better quality before face detection
|
||||
source_image_upscaled = upscale_image(source_image, scaling_factor=2)
|
||||
|
||||
# Detect source face from the upscaled image
|
||||
source_face = get_one_face(source_image_upscaled)
|
||||
if source_face is None:
|
||||
print("No source face detected.")
|
||||
return
|
||||
|
||||
target_frame = cv2.imread(target_path)
|
||||
if target_frame is None:
|
||||
print(f"Failed to load target image from {target_path}")
|
||||
return
|
||||
|
||||
# Process the frame
|
||||
result = process_frame(target_frame)
|
||||
|
||||
# Save the processed frame
|
||||
cv2.imwrite(output_path, result)
|
||||
|
||||
|
||||
def process_video(source_path: str, temp_frame_paths: List[str]) -> None:
|
||||
"""
|
||||
Processes a video by swapping the source face into each frame.
|
||||
|
||||
Args:
|
||||
source_path (str): Path to the source image.
|
||||
temp_frame_paths (List[str]): List of paths to video frame images.
|
||||
"""
|
||||
modules.processors.frame.core.process_video(None, temp_frame_paths, process_frames)
|
Loading…
Reference in New Issue