From 07e30fe781c04f6e4b3f95cde51d36f8c55206fd Mon Sep 17 00:00:00 2001 From: Kenneth Estanislao Date: Thu, 17 Apr 2025 02:03:34 +0800 Subject: [PATCH] Revert "Update face_swapper.py" This reverts commit 104d8cf4d6b2ff526198ef9c5af87a8120e990bd. --- modules/processors/frame/face_swapper.py | 682 +++++++++++++++++------ 1 file changed, 523 insertions(+), 159 deletions(-) diff --git a/modules/processors/frame/face_swapper.py b/modules/processors/frame/face_swapper.py index b09e600..36b83d6 100644 --- a/modules/processors/frame/face_swapper.py +++ b/modules/processors/frame/face_swapper.py @@ -1,44 +1,56 @@ -import os # <-- Added for os.path.exists from typing import Any, List import cv2 import insightface import threading - +import numpy as np import modules.globals +import logging import modules.processors.frame.core -# Ensure update_status is imported if not already globally accessible -# If it's part of modules.core, it might already be accessible via modules.core.update_status from modules.core import update_status from modules.face_analyser import get_one_face, get_many_faces, default_source_face from modules.typing import Face, Frame -from modules.utilities import conditional_download, resolve_relative_path, is_image, is_video +from modules.utilities import ( + conditional_download, + is_image, + is_video, +) from modules.cluster_analysis import find_closest_centroid +import os FACE_SWAPPER = None THREAD_LOCK = threading.Lock() -NAME = 'DLC.FACE-SWAPPER' +NAME = "DLC.FACE-SWAPPER" + +abs_dir = os.path.dirname(os.path.abspath(__file__)) +models_dir = os.path.join( + os.path.dirname(os.path.dirname(os.path.dirname(abs_dir))), "models" +) def pre_check() -> bool: - download_directory_path = resolve_relative_path('../models') - # Ensure both models are mentioned or downloaded if necessary - # Conditional download might need adjustment if you want it to fetch FP32 too - conditional_download(download_directory_path, ['https://huggingface.co/hacksider/deep-live-cam/blob/main/inswapper_128_fp16.onnx']) - # Add a check or download for the FP32 model if you have a URL - # conditional_download(download_directory_path, ['URL_TO_FP32_MODEL_HERE']) + download_directory_path = abs_dir + conditional_download( + download_directory_path, + [ + "https://huggingface.co/hacksider/deep-live-cam/blob/main/inswapper_128_fp16.onnx" + ], + ) return True def pre_start() -> bool: - # --- No changes needed in pre_start --- if not modules.globals.map_faces and not is_image(modules.globals.source_path): - update_status('Select an image for source path.', NAME) + update_status("Select an image for source path.", NAME) return False - elif not modules.globals.map_faces and not get_one_face(cv2.imread(modules.globals.source_path)): - update_status('No face in source path detected.', NAME) + elif not modules.globals.map_faces and not get_one_face( + cv2.imread(modules.globals.source_path) + ): + update_status("No face in source path detected.", NAME) return False - if not is_image(modules.globals.target_path) and not is_video(modules.globals.target_path): - update_status('Select an image or video for target path.', NAME) + if not is_image(modules.globals.target_path) and not is_video( + modules.globals.target_path + ): + update_status("Select an image or video for target path.", NAME) return False return True @@ -48,112 +60,110 @@ def get_face_swapper() -> Any: with THREAD_LOCK: if FACE_SWAPPER is None: - # --- MODIFICATION START --- - # Define paths for both FP32 and FP16 models - model_dir = resolve_relative_path('../models') - model_path_fp32 = os.path.join(model_dir, 'inswapper_128.onnx') - model_path_fp16 = os.path.join(model_dir, 'inswapper_128_fp16.onnx') - chosen_model_path = None - - # Prioritize FP32 model - if os.path.exists(model_path_fp32): - chosen_model_path = model_path_fp32 - update_status(f"Loading FP32 model: {os.path.basename(chosen_model_path)}", NAME) - # Fallback to FP16 model - elif os.path.exists(model_path_fp16): - chosen_model_path = model_path_fp16 - update_status(f"FP32 model not found. Loading FP16 model: {os.path.basename(chosen_model_path)}", NAME) - # Error if neither model is found - else: - error_message = f"Face Swapper model not found. Please ensure 'inswapper_128.onnx' (recommended) or 'inswapper_128_fp16.onnx' exists in the '{model_dir}' directory." - update_status(error_message, NAME) - raise FileNotFoundError(error_message) - - # Load the chosen model - try: - FACE_SWAPPER = insightface.model_zoo.get_model(chosen_model_path, providers=modules.globals.execution_providers) - except Exception as e: - update_status(f"Error loading Face Swapper model {os.path.basename(chosen_model_path)}: {e}", NAME) - # Optionally, re-raise the exception or handle it more gracefully - raise e - # --- MODIFICATION END --- + model_path = os.path.join(models_dir, "inswapper_128_fp16.onnx") + FACE_SWAPPER = insightface.model_zoo.get_model( + model_path, providers=modules.globals.execution_providers + ) return FACE_SWAPPER def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame: - # --- No changes needed in swap_face --- - swapper = get_face_swapper() - if swapper is None: - # Handle case where model failed to load - update_status("Face swapper model not loaded, skipping swap.", NAME) - return temp_frame - return swapper.get(temp_frame, target_face, source_face, paste_back=True) + face_swapper = get_face_swapper() + + # Apply the face swap + swapped_frame = face_swapper.get( + temp_frame, target_face, source_face, paste_back=True + ) + + if modules.globals.mouth_mask: + # Create a mask for the target face + face_mask = create_face_mask(target_face, temp_frame) + + # Create the mouth mask + mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon = ( + create_lower_mouth_mask(target_face, temp_frame) + ) + + # Apply the mouth area + swapped_frame = apply_mouth_area( + swapped_frame, mouth_cutout, mouth_box, face_mask, lower_lip_polygon + ) + + if modules.globals.show_mouth_mask_box: + mouth_mask_data = (mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon) + swapped_frame = draw_mouth_mask_visualization( + swapped_frame, target_face, mouth_mask_data + ) + + return swapped_frame def process_frame(source_face: Face, temp_frame: Frame) -> Frame: - # --- No changes needed in process_frame --- - # Ensure the frame is in RGB format if color correction is enabled - # Note: InsightFace swapper often expects BGR by default. Double-check if color issues appear. - # If color correction is needed *before* swapping and insightface needs BGR: - # original_was_bgr = True # Assume input is BGR - # if modules.globals.color_correction: - # temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) - # original_was_bgr = False # Now it's RGB + if modules.globals.color_correction: + temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) if modules.globals.many_faces: many_faces = get_many_faces(temp_frame) if many_faces: for target_face in many_faces: - temp_frame = swap_face(source_face, target_face, temp_frame) + if source_face and target_face: + temp_frame = swap_face(source_face, target_face, temp_frame) + else: + print("Face detection failed for target/source.") else: target_face = get_one_face(temp_frame) - if target_face: + if target_face and source_face: temp_frame = swap_face(source_face, target_face, temp_frame) - - # Convert back if necessary (example, might not be needed depending on workflow) - # if modules.globals.color_correction and not original_was_bgr: - # temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_RGB2BGR) - + else: + logging.error("Face detection failed for target or source.") return temp_frame + def process_frame_v2(temp_frame: Frame, temp_frame_path: str = "") -> Frame: - # --- No changes needed in process_frame_v2 --- - # (Assuming swap_face handles the potential None return from get_face_swapper) if is_image(modules.globals.target_path): if modules.globals.many_faces: source_face = default_source_face() - for map_entry in modules.globals.souce_target_map: # Renamed 'map' to 'map_entry' - target_face = map_entry['target']['face'] + for map in modules.globals.source_target_map: + target_face = map["target"]["face"] temp_frame = swap_face(source_face, target_face, temp_frame) elif not modules.globals.many_faces: - for map_entry in modules.globals.souce_target_map: # Renamed 'map' to 'map_entry' - if "source" in map_entry: - source_face = map_entry['source']['face'] - target_face = map_entry['target']['face'] + for map in modules.globals.source_target_map: + if "source" in map: + source_face = map["source"]["face"] + target_face = map["target"]["face"] temp_frame = swap_face(source_face, target_face, temp_frame) elif is_video(modules.globals.target_path): if modules.globals.many_faces: source_face = default_source_face() - for map_entry in modules.globals.souce_target_map: # Renamed 'map' to 'map_entry' - target_frame = [f for f in map_entry['target_faces_in_frame'] if f['location'] == temp_frame_path] + for map in modules.globals.source_target_map: + target_frame = [ + f + for f in map["target_faces_in_frame"] + if f["location"] == temp_frame_path + ] for frame in target_frame: - for target_face in frame['faces']: + for target_face in frame["faces"]: temp_frame = swap_face(source_face, target_face, temp_frame) elif not modules.globals.many_faces: - for map_entry in modules.globals.souce_target_map: # Renamed 'map' to 'map_entry' - if "source" in map_entry: - target_frame = [f for f in map_entry['target_faces_in_frame'] if f['location'] == temp_frame_path] - source_face = map_entry['source']['face'] + for map in modules.globals.source_target_map: + if "source" in map: + target_frame = [ + f + for f in map["target_faces_in_frame"] + if f["location"] == temp_frame_path + ] + source_face = map["source"]["face"] for frame in target_frame: - for target_face in frame['faces']: + for target_face in frame["faces"]: temp_frame = swap_face(source_face, target_face, temp_frame) - else: # Fallback for neither image nor video (e.g., live feed?) + + else: detected_faces = get_many_faces(temp_frame) if modules.globals.many_faces: if detected_faces: @@ -162,97 +172,451 @@ def process_frame_v2(temp_frame: Frame, temp_frame_path: str = "") -> Frame: temp_frame = swap_face(source_face, target_face, temp_frame) elif not modules.globals.many_faces: - if detected_faces and hasattr(modules.globals, 'simple_map') and modules.globals.simple_map: # Check simple_map exists - if len(detected_faces) <= len(modules.globals.simple_map['target_embeddings']): + if detected_faces: + if len(detected_faces) <= len( + modules.globals.simple_map["target_embeddings"] + ): for detected_face in detected_faces: - closest_centroid_index, _ = find_closest_centroid(modules.globals.simple_map['target_embeddings'], detected_face.normed_embedding) - temp_frame = swap_face(modules.globals.simple_map['source_faces'][closest_centroid_index], detected_face, temp_frame) + closest_centroid_index, _ = find_closest_centroid( + modules.globals.simple_map["target_embeddings"], + detected_face.normed_embedding, + ) + + temp_frame = swap_face( + modules.globals.simple_map["source_faces"][ + closest_centroid_index + ], + detected_face, + temp_frame, + ) else: - detected_faces_centroids = [face.normed_embedding for face in detected_faces] + detected_faces_centroids = [] + for face in detected_faces: + detected_faces_centroids.append(face.normed_embedding) i = 0 - for target_embedding in modules.globals.simple_map['target_embeddings']: - closest_centroid_index, _ = find_closest_centroid(detected_faces_centroids, target_embedding) - # Ensure index is valid before accessing detected_faces - if closest_centroid_index < len(detected_faces): - temp_frame = swap_face(modules.globals.simple_map['source_faces'][i], detected_faces[closest_centroid_index], temp_frame) + for target_embedding in modules.globals.simple_map[ + "target_embeddings" + ]: + closest_centroid_index, _ = find_closest_centroid( + detected_faces_centroids, target_embedding + ) + + temp_frame = swap_face( + modules.globals.simple_map["source_faces"][i], + detected_faces[closest_centroid_index], + temp_frame, + ) i += 1 return temp_frame -def process_frames(source_path: str, temp_frame_paths: List[str], progress: Any = None) -> None: - # --- No changes needed in process_frames --- - # Note: Ensure get_one_face is called only once if possible for efficiency if !map_faces - source_face = None +def process_frames( + source_path: str, temp_frame_paths: List[str], progress: Any = None +) -> None: if not modules.globals.map_faces: - source_img = cv2.imread(source_path) - if source_img is not None: - source_face = get_one_face(source_img) - if source_face is None: - update_status(f"Could not find face in source image: {source_path}, skipping swap.", NAME) - # If no source face, maybe skip processing? Or handle differently. - # For now, it will proceed but swap_face might fail later. - - for temp_frame_path in temp_frame_paths: - temp_frame = cv2.imread(temp_frame_path) - if temp_frame is None: - update_status(f"Warning: Could not read frame {temp_frame_path}", NAME) - if progress: progress.update(1) # Still update progress even if frame fails - continue # Skip to next frame - - try: - if not modules.globals.map_faces: - if source_face: # Only process if source face was found - result = process_frame(source_face, temp_frame) - else: - result = temp_frame # No source face, return original frame - else: - result = process_frame_v2(temp_frame, temp_frame_path) - - cv2.imwrite(temp_frame_path, result) - except Exception as exception: - update_status(f"Error processing frame {os.path.basename(temp_frame_path)}: {exception}", NAME) - # Decide whether to 'pass' (continue processing other frames) or raise - pass # Continue processing other frames - finally: + source_face = get_one_face(cv2.imread(source_path)) + for temp_frame_path in temp_frame_paths: + temp_frame = cv2.imread(temp_frame_path) + try: + result = process_frame(source_face, temp_frame) + cv2.imwrite(temp_frame_path, result) + except Exception as exception: + print(exception) + pass + if progress: + progress.update(1) + else: + for temp_frame_path in temp_frame_paths: + temp_frame = cv2.imread(temp_frame_path) + try: + result = process_frame_v2(temp_frame, temp_frame_path) + cv2.imwrite(temp_frame_path, result) + except Exception as exception: + print(exception) + pass if progress: progress.update(1) def process_image(source_path: str, target_path: str, output_path: str) -> None: - # --- No changes needed in process_image --- - # Note: Added checks for successful image reads and face detection - target_frame = cv2.imread(target_path) # Read original target for processing - if target_frame is None: - update_status(f"Error: Could not read target image: {target_path}", NAME) - return - if not modules.globals.map_faces: - source_img = cv2.imread(source_path) - if source_img is None: - update_status(f"Error: Could not read source image: {source_path}", NAME) - return - source_face = get_one_face(source_img) - if source_face is None: - update_status(f"Error: No face found in source image: {source_path}", NAME) - return - + source_face = get_one_face(cv2.imread(source_path)) + target_frame = cv2.imread(target_path) result = process_frame(source_face, target_frame) + cv2.imwrite(output_path, result) else: if modules.globals.many_faces: - update_status('Many faces enabled. Using first source image (if applicable in v2). Processing...', NAME) - # For process_frame_v2 on single image, it reads the 'output_path' which should be a copy - # Let's process the 'target_frame' we read instead. - result = process_frame_v2(target_frame) # Process the frame directly - - # Write the final result to the output path - success = cv2.imwrite(output_path, result) - if not success: - update_status(f"Error: Failed to write output image to: {output_path}", NAME) + update_status( + "Many faces enabled. Using first source image. Progressing...", NAME + ) + target_frame = cv2.imread(output_path) + result = process_frame_v2(target_frame) + cv2.imwrite(output_path, result) def process_video(source_path: str, temp_frame_paths: List[str]) -> None: - # --- No changes needed in process_video --- if modules.globals.map_faces and modules.globals.many_faces: - update_status('Many faces enabled. Using first source image (if applicable in v2). Processing...', NAME) - # The core processing logic is delegated, which is good. - modules.processors.frame.core.process_video(source_path, temp_frame_paths, process_frames) \ No newline at end of file + update_status( + "Many faces enabled. Using first source image. Progressing...", NAME + ) + modules.processors.frame.core.process_video( + source_path, temp_frame_paths, process_frames + ) + + +def create_lower_mouth_mask( + face: Face, frame: Frame +) -> (np.ndarray, np.ndarray, tuple, np.ndarray): + mask = np.zeros(frame.shape[:2], dtype=np.uint8) + mouth_cutout = None + landmarks = face.landmark_2d_106 + if landmarks is not None: + # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 + lower_lip_order = [ + 65, + 66, + 62, + 70, + 69, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 0, + 8, + 7, + 6, + 5, + 4, + 3, + 2, + 65, + ] + lower_lip_landmarks = landmarks[lower_lip_order].astype( + np.float32 + ) # Use float for precise calculations + + # Calculate the center of the landmarks + center = np.mean(lower_lip_landmarks, axis=0) + + # Expand the landmarks outward + expansion_factor = ( + 1 + modules.globals.mask_down_size + ) # Adjust this for more or less expansion + expanded_landmarks = (lower_lip_landmarks - center) * expansion_factor + center + + # Extend the top lip part + toplip_indices = [ + 20, + 0, + 1, + 2, + 3, + 4, + 5, + ] # Indices for landmarks 2, 65, 66, 62, 70, 69, 18 + toplip_extension = ( + modules.globals.mask_size * 0.5 + ) # Adjust this factor to control the extension + for idx in toplip_indices: + direction = expanded_landmarks[idx] - center + direction = direction / np.linalg.norm(direction) + expanded_landmarks[idx] += direction * toplip_extension + + # Extend the bottom part (chin area) + chin_indices = [ + 11, + 12, + 13, + 14, + 15, + 16, + ] # Indices for landmarks 21, 22, 23, 24, 0, 8 + chin_extension = 2 * 0.2 # Adjust this factor to control the extension + for idx in chin_indices: + expanded_landmarks[idx][1] += ( + expanded_landmarks[idx][1] - center[1] + ) * chin_extension + + # Convert back to integer coordinates + expanded_landmarks = expanded_landmarks.astype(np.int32) + + # Calculate bounding box for the expanded lower mouth + min_x, min_y = np.min(expanded_landmarks, axis=0) + max_x, max_y = np.max(expanded_landmarks, axis=0) + + # Add some padding to the bounding box + padding = int((max_x - min_x) * 0.1) # 10% padding + min_x = max(0, min_x - padding) + min_y = max(0, min_y - padding) + max_x = min(frame.shape[1], max_x + padding) + max_y = min(frame.shape[0], max_y + padding) + + # Ensure the bounding box dimensions are valid + if max_x <= min_x or max_y <= min_y: + if (max_x - min_x) <= 1: + max_x = min_x + 1 + if (max_y - min_y) <= 1: + max_y = min_y + 1 + + # Create the mask + mask_roi = np.zeros((max_y - min_y, max_x - min_x), dtype=np.uint8) + cv2.fillPoly(mask_roi, [expanded_landmarks - [min_x, min_y]], 255) + + # Apply Gaussian blur to soften the mask edges + mask_roi = cv2.GaussianBlur(mask_roi, (15, 15), 5) + + # Place the mask ROI in the full-sized mask + mask[min_y:max_y, min_x:max_x] = mask_roi + + # Extract the masked area from the frame + mouth_cutout = frame[min_y:max_y, min_x:max_x].copy() + + # Return the expanded lower lip polygon in original frame coordinates + lower_lip_polygon = expanded_landmarks + + return mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon + + +def draw_mouth_mask_visualization( + frame: Frame, face: Face, mouth_mask_data: tuple +) -> Frame: + landmarks = face.landmark_2d_106 + if landmarks is not None and mouth_mask_data is not None: + mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon = ( + mouth_mask_data + ) + + vis_frame = frame.copy() + + # Ensure coordinates are within frame bounds + height, width = vis_frame.shape[:2] + min_x, min_y = max(0, min_x), max(0, min_y) + max_x, max_y = min(width, max_x), min(height, max_y) + + # Adjust mask to match the region size + mask_region = mask[0 : max_y - min_y, 0 : max_x - min_x] + + # Remove the color mask overlay + # color_mask = cv2.applyColorMap((mask_region * 255).astype(np.uint8), cv2.COLORMAP_JET) + + # Ensure shapes match before blending + vis_region = vis_frame[min_y:max_y, min_x:max_x] + # Remove blending with color_mask + # if vis_region.shape[:2] == color_mask.shape[:2]: + # blended = cv2.addWeighted(vis_region, 0.7, color_mask, 0.3, 0) + # vis_frame[min_y:max_y, min_x:max_x] = blended + + # Draw the lower lip polygon + cv2.polylines(vis_frame, [lower_lip_polygon], True, (0, 255, 0), 2) + + # Remove the red box + # cv2.rectangle(vis_frame, (min_x, min_y), (max_x, max_y), (0, 0, 255), 2) + + # Visualize the feathered mask + feather_amount = max( + 1, + min( + 30, + (max_x - min_x) // modules.globals.mask_feather_ratio, + (max_y - min_y) // modules.globals.mask_feather_ratio, + ), + ) + # Ensure kernel size is odd + kernel_size = 2 * feather_amount + 1 + feathered_mask = cv2.GaussianBlur( + mask_region.astype(float), (kernel_size, kernel_size), 0 + ) + feathered_mask = (feathered_mask / feathered_mask.max() * 255).astype(np.uint8) + # Remove the feathered mask color overlay + # color_feathered_mask = cv2.applyColorMap(feathered_mask, cv2.COLORMAP_VIRIDIS) + + # Ensure shapes match before blending feathered mask + # if vis_region.shape == color_feathered_mask.shape: + # blended_feathered = cv2.addWeighted(vis_region, 0.7, color_feathered_mask, 0.3, 0) + # vis_frame[min_y:max_y, min_x:max_x] = blended_feathered + + # Add labels + cv2.putText( + vis_frame, + "Lower Mouth Mask", + (min_x, min_y - 10), + cv2.FONT_HERSHEY_SIMPLEX, + 0.5, + (255, 255, 255), + 1, + ) + cv2.putText( + vis_frame, + "Feathered Mask", + (min_x, max_y + 20), + cv2.FONT_HERSHEY_SIMPLEX, + 0.5, + (255, 255, 255), + 1, + ) + + return vis_frame + return frame + + +def apply_mouth_area( + frame: np.ndarray, + mouth_cutout: np.ndarray, + mouth_box: tuple, + face_mask: np.ndarray, + mouth_polygon: np.ndarray, +) -> np.ndarray: + min_x, min_y, max_x, max_y = mouth_box + box_width = max_x - min_x + box_height = max_y - min_y + + if ( + mouth_cutout is None + or box_width is None + or box_height is None + or face_mask is None + or mouth_polygon is None + ): + return frame + + try: + resized_mouth_cutout = cv2.resize(mouth_cutout, (box_width, box_height)) + roi = frame[min_y:max_y, min_x:max_x] + + if roi.shape != resized_mouth_cutout.shape: + resized_mouth_cutout = cv2.resize( + resized_mouth_cutout, (roi.shape[1], roi.shape[0]) + ) + + color_corrected_mouth = apply_color_transfer(resized_mouth_cutout, roi) + + # Use the provided mouth polygon to create the mask + polygon_mask = np.zeros(roi.shape[:2], dtype=np.uint8) + adjusted_polygon = mouth_polygon - [min_x, min_y] + cv2.fillPoly(polygon_mask, [adjusted_polygon], 255) + + # Apply feathering to the polygon mask + feather_amount = min( + 30, + box_width // modules.globals.mask_feather_ratio, + box_height // modules.globals.mask_feather_ratio, + ) + feathered_mask = cv2.GaussianBlur( + polygon_mask.astype(float), (0, 0), feather_amount + ) + feathered_mask = feathered_mask / feathered_mask.max() + + face_mask_roi = face_mask[min_y:max_y, min_x:max_x] + combined_mask = feathered_mask * (face_mask_roi / 255.0) + + combined_mask = combined_mask[:, :, np.newaxis] + blended = ( + color_corrected_mouth * combined_mask + roi * (1 - combined_mask) + ).astype(np.uint8) + + # Apply face mask to blended result + face_mask_3channel = ( + np.repeat(face_mask_roi[:, :, np.newaxis], 3, axis=2) / 255.0 + ) + final_blend = blended * face_mask_3channel + roi * (1 - face_mask_3channel) + + frame[min_y:max_y, min_x:max_x] = final_blend.astype(np.uint8) + except Exception as e: + pass + + return frame + + +def create_face_mask(face: Face, frame: Frame) -> np.ndarray: + mask = np.zeros(frame.shape[:2], dtype=np.uint8) + landmarks = face.landmark_2d_106 + if landmarks is not None: + # Convert landmarks to int32 + landmarks = landmarks.astype(np.int32) + + # Extract facial features + right_side_face = landmarks[0:16] + left_side_face = landmarks[17:32] + right_eye = landmarks[33:42] + right_eye_brow = landmarks[43:51] + left_eye = landmarks[87:96] + left_eye_brow = landmarks[97:105] + + # Calculate forehead extension + right_eyebrow_top = np.min(right_eye_brow[:, 1]) + left_eyebrow_top = np.min(left_eye_brow[:, 1]) + eyebrow_top = min(right_eyebrow_top, left_eyebrow_top) + + face_top = np.min([right_side_face[0, 1], left_side_face[-1, 1]]) + forehead_height = face_top - eyebrow_top + extended_forehead_height = int(forehead_height * 5.0) # Extend by 50% + + # Create forehead points + forehead_left = right_side_face[0].copy() + forehead_right = left_side_face[-1].copy() + forehead_left[1] -= extended_forehead_height + forehead_right[1] -= extended_forehead_height + + # Combine all points to create the face outline + face_outline = np.vstack( + [ + [forehead_left], + right_side_face, + left_side_face[ + ::-1 + ], # Reverse left side to create a continuous outline + [forehead_right], + ] + ) + + # Calculate padding + padding = int( + np.linalg.norm(right_side_face[0] - left_side_face[-1]) * 0.05 + ) # 5% of face width + + # Create a slightly larger convex hull for padding + hull = cv2.convexHull(face_outline) + hull_padded = [] + for point in hull: + x, y = point[0] + center = np.mean(face_outline, axis=0) + direction = np.array([x, y]) - center + direction = direction / np.linalg.norm(direction) + padded_point = np.array([x, y]) + direction * padding + hull_padded.append(padded_point) + + hull_padded = np.array(hull_padded, dtype=np.int32) + + # Fill the padded convex hull + cv2.fillConvexPoly(mask, hull_padded, 255) + + # Smooth the mask edges + mask = cv2.GaussianBlur(mask, (5, 5), 3) + + return mask + + +def apply_color_transfer(source, target): + """ + Apply color transfer from target to source image + """ + source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype("float32") + target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype("float32") + + source_mean, source_std = cv2.meanStdDev(source) + target_mean, target_std = cv2.meanStdDev(target) + + # Reshape mean and std to be broadcastable + source_mean = source_mean.reshape(1, 1, 3) + source_std = source_std.reshape(1, 1, 3) + target_mean = target_mean.reshape(1, 1, 3) + target_std = target_std.reshape(1, 1, 3) + + # Perform the color transfer + source = (source - source_mean) * (target_std / source_std) + target_mean + + return cv2.cvtColor(np.clip(source, 0, 255).astype("uint8"), cv2.COLOR_LAB2BGR)