pull/1340/merge
Christoph9211 2025-06-08 17:08:14 -05:00 committed by GitHub
commit 075c9f4399
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 147 additions and 413 deletions

View File

@ -19,7 +19,24 @@ import modules.globals
import modules.metadata
import modules.ui as ui
from modules.processors.frame.core import get_frame_processors_modules
from modules.utilities import has_image_extension, is_image, is_video, detect_fps, create_video, extract_frames, get_temp_frame_paths, restore_audio, create_temp, move_temp, clean_temp, normalize_output_path
from modules.utilities import (
has_image_extension,
is_image,
is_video,
detect_fps,
create_video,
extract_frames,
get_temp_frame_paths,
restore_audio,
create_temp,
move_temp,
clean_temp,
normalize_output_path,
start_ffmpeg_writer,
get_temp_output_path,
)
import cv2
from tqdm import tqdm
if 'ROCMExecutionProvider' in modules.globals.execution_providers:
del torch
@ -175,6 +192,47 @@ def update_status(message: str, scope: str = 'DLC.CORE') -> None:
if not modules.globals.headless:
ui.update_status(message)
def stream_video() -> None:
capture = cv2.VideoCapture(modules.globals.target_path)
if not capture.isOpened():
update_status('Failed to open video file.')
return
fps = capture.get(cv2.CAP_PROP_FPS) if modules.globals.keep_fps else 30.0
width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
total = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
update_status('Creating temp resources...')
create_temp(modules.globals.target_path)
temp_output_path = get_temp_output_path(modules.globals.target_path)
writer = start_ffmpeg_writer(width, height, fps, temp_output_path)
progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
with tqdm(total=total, desc='Processing', unit='frame', dynamic_ncols=True, bar_format=progress_bar_format) as progress:
progress.set_postfix({'execution_providers': modules.globals.execution_providers, 'execution_threads': modules.globals.execution_threads, 'max_memory': modules.globals.max_memory})
while True:
ret, frame = capture.read()
if not ret:
break
for frame_processor in get_frame_processors_modules(modules.globals.frame_processors):
frame = frame_processor.process_frame_stream(modules.globals.source_path, frame)
writer.stdin.write(frame.tobytes())
progress.update(1)
capture.release()
writer.stdin.close()
exit_code = writer.wait()
if exit_code != 0:
raise RuntimeError(f"ffmpeg writer exited with non-zero status: {exit_code}")
if modules.globals.keep_audio:
update_status('Restoring audio...')
restore_audio(modules.globals.target_path, modules.globals.output_path)
else:
move_temp(modules.globals.target_path, modules.globals.output_path)
clean_temp(modules.globals.target_path)
def start() -> None:
for frame_processor in get_frame_processors_modules(modules.globals.frame_processors):
if not frame_processor.pre_start():
@ -202,10 +260,17 @@ def start() -> None:
return
if not modules.globals.map_faces:
update_status('Creating temp resources...')
create_temp(modules.globals.target_path)
update_status('Extracting frames...')
extract_frames(modules.globals.target_path)
stream_video()
if is_video(modules.globals.target_path):
update_status('Processing to video succeed!')
else:
update_status('Processing to video failed!')
return
update_status('Creating temp resources...')
create_temp(modules.globals.target_path)
update_status('Extracting frames...')
extract_frames(modules.globals.target_path)
temp_frame_paths = get_temp_frame_paths(modules.globals.target_path)
for frame_processor in get_frame_processors_modules(modules.globals.frame_processors):

View File

@ -14,7 +14,8 @@ FRAME_PROCESSORS_INTERFACE = [
'pre_start',
'process_frame',
'process_image',
'process_video'
'process_video',
'process_frame_stream'
]

View File

@ -48,17 +48,6 @@ def pre_start() -> bool:
return True
TENSORRT_AVAILABLE = False
try:
import torch_tensorrt
TENSORRT_AVAILABLE = True
except ImportError as im:
print(f"TensorRT is not available: {im}")
pass
except Exception as e:
print(f"TensorRT is not available: {e}")
pass
def get_face_enhancer() -> Any:
global FACE_ENHANCER
@ -66,26 +55,16 @@ def get_face_enhancer() -> Any:
if FACE_ENHANCER is None:
model_path = os.path.join(models_dir, "GFPGANv1.4.pth")
selected_device = None
device_priority = []
match platform.system():
case "Darwin": # Mac OS
if torch.backends.mps.is_available():
mps_device = torch.device("mps")
FACE_ENHANCER = gfpgan.GFPGANer(model_path=model_path, upscale=1, device=mps_device) # type: ignore[attr-defined]
else:
FACE_ENHANCER = gfpgan.GFPGANer(model_path=model_path, upscale=1) # type: ignore[attr-defined]
case _: # Other OS
FACE_ENHANCER = gfpgan.GFPGANer(model_path=model_path, upscale=1) # type: ignore[attr-defined]
if TENSORRT_AVAILABLE and torch.cuda.is_available():
selected_device = torch.device("cuda")
device_priority.append("TensorRT+CUDA")
elif torch.cuda.is_available():
selected_device = torch.device("cuda")
device_priority.append("CUDA")
elif torch.backends.mps.is_available() and platform.system() == "Darwin":
selected_device = torch.device("mps")
device_priority.append("MPS")
elif not torch.cuda.is_available():
selected_device = torch.device("cpu")
device_priority.append("CPU")
FACE_ENHANCER = gfpgan.GFPGANer(model_path=model_path, upscale=1, device=selected_device)
# for debug:
print(f"Selected device: {selected_device} and device priority: {device_priority}")
return FACE_ENHANCER
@ -128,3 +107,8 @@ def process_frame_v2(temp_frame: Frame) -> Frame:
if target_face:
temp_frame = enhance_face(temp_frame)
return temp_frame
def process_frame_stream(source_path: str, frame: Frame) -> Frame:
return process_frame(None, frame)

View File

@ -124,40 +124,32 @@ def process_frame_v2(temp_frame: Frame, temp_frame_path: str = "") -> Frame:
if is_image(modules.globals.target_path):
if modules.globals.many_faces:
source_face = default_source_face()
for map in modules.globals.source_target_map:
target_face = map["target"]["face"]
for map in modules.globals.source_target_map:
target_face = map['target']['face']
temp_frame = swap_face(source_face, target_face, temp_frame)
elif not modules.globals.many_faces:
for map in modules.globals.source_target_map:
for map in modules.globals.source_target_map:
if "source" in map:
source_face = map["source"]["face"]
target_face = map["target"]["face"]
source_face = map['source']['face']
target_face = map['target']['face']
temp_frame = swap_face(source_face, target_face, temp_frame)
elif is_video(modules.globals.target_path):
if modules.globals.many_faces:
source_face = default_source_face()
for map in modules.globals.source_target_map:
target_frame = [
f
for f in map["target_faces_in_frame"]
if f["location"] == temp_frame_path
]
for map in modules.globals.source_target_map:
target_frame = [f for f in map['target_faces_in_frame'] if f['location'] == temp_frame_path]
for frame in target_frame:
for target_face in frame["faces"]:
temp_frame = swap_face(source_face, target_face, temp_frame)
elif not modules.globals.many_faces:
for map in modules.globals.source_target_map:
for map in modules.globals.source_target_map:
if "source" in map:
target_frame = [
f
for f in map["target_faces_in_frame"]
if f["location"] == temp_frame_path
]
source_face = map["source"]["face"]
target_frame = [f for f in map['target_faces_in_frame'] if f['location'] == temp_frame_path]
source_face = map['source']['face']
for frame in target_frame:
for target_face in frame["faces"]:
@ -256,367 +248,26 @@ def process_image(source_path: str, target_path: str, output_path: str) -> None:
def process_video(source_path: str, temp_frame_paths: List[str]) -> None:
if modules.globals.map_faces and modules.globals.many_faces:
update_status(
"Many faces enabled. Using first source image. Progressing...", NAME
)
modules.processors.frame.core.process_video(
source_path, temp_frame_paths, process_frames
)
update_status('Many faces enabled. Using first source image (if applicable in v2). Processing...', NAME)
# The core processing logic is delegated, which is good.
modules.processors.frame.core.process_video(source_path, temp_frame_paths, process_frames)
def create_lower_mouth_mask(
face: Face, frame: Frame
) -> (np.ndarray, np.ndarray, tuple, np.ndarray):
mask = np.zeros(frame.shape[:2], dtype=np.uint8)
mouth_cutout = None
landmarks = face.landmark_2d_106
if landmarks is not None:
# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
lower_lip_order = [
65,
66,
62,
70,
69,
18,
19,
20,
21,
22,
23,
24,
0,
8,
7,
6,
5,
4,
3,
2,
65,
]
lower_lip_landmarks = landmarks[lower_lip_order].astype(
np.float32
) # Use float for precise calculations
# Calculate the center of the landmarks
center = np.mean(lower_lip_landmarks, axis=0)
# Expand the landmarks outward
expansion_factor = (
1 + modules.globals.mask_down_size
) # Adjust this for more or less expansion
expanded_landmarks = (lower_lip_landmarks - center) * expansion_factor + center
# Extend the top lip part
toplip_indices = [
20,
0,
1,
2,
3,
4,
5,
] # Indices for landmarks 2, 65, 66, 62, 70, 69, 18
toplip_extension = (
modules.globals.mask_size * 0.5
) # Adjust this factor to control the extension
for idx in toplip_indices:
direction = expanded_landmarks[idx] - center
direction = direction / np.linalg.norm(direction)
expanded_landmarks[idx] += direction * toplip_extension
# Extend the bottom part (chin area)
chin_indices = [
11,
12,
13,
14,
15,
16,
] # Indices for landmarks 21, 22, 23, 24, 0, 8
chin_extension = 2 * 0.2 # Adjust this factor to control the extension
for idx in chin_indices:
expanded_landmarks[idx][1] += (
expanded_landmarks[idx][1] - center[1]
) * chin_extension
# Convert back to integer coordinates
expanded_landmarks = expanded_landmarks.astype(np.int32)
# Calculate bounding box for the expanded lower mouth
min_x, min_y = np.min(expanded_landmarks, axis=0)
max_x, max_y = np.max(expanded_landmarks, axis=0)
# Add some padding to the bounding box
padding = int((max_x - min_x) * 0.1) # 10% padding
min_x = max(0, min_x - padding)
min_y = max(0, min_y - padding)
max_x = min(frame.shape[1], max_x + padding)
max_y = min(frame.shape[0], max_y + padding)
# Ensure the bounding box dimensions are valid
if max_x <= min_x or max_y <= min_y:
if (max_x - min_x) <= 1:
max_x = min_x + 1
if (max_y - min_y) <= 1:
max_y = min_y + 1
# Create the mask
mask_roi = np.zeros((max_y - min_y, max_x - min_x), dtype=np.uint8)
cv2.fillPoly(mask_roi, [expanded_landmarks - [min_x, min_y]], 255)
# Apply Gaussian blur to soften the mask edges
mask_roi = cv2.GaussianBlur(mask_roi, (15, 15), 5)
# Place the mask ROI in the full-sized mask
mask[min_y:max_y, min_x:max_x] = mask_roi
# Extract the masked area from the frame
mouth_cutout = frame[min_y:max_y, min_x:max_x].copy()
# Return the expanded lower lip polygon in original frame coordinates
lower_lip_polygon = expanded_landmarks
return mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon
STREAM_SOURCE_FACE = None
def draw_mouth_mask_visualization(
frame: Frame, face: Face, mouth_mask_data: tuple
) -> Frame:
landmarks = face.landmark_2d_106
if landmarks is not None and mouth_mask_data is not None:
mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon = (
mouth_mask_data
)
vis_frame = frame.copy()
# Ensure coordinates are within frame bounds
height, width = vis_frame.shape[:2]
min_x, min_y = max(0, min_x), max(0, min_y)
max_x, max_y = min(width, max_x), min(height, max_y)
# Adjust mask to match the region size
mask_region = mask[0 : max_y - min_y, 0 : max_x - min_x]
# Remove the color mask overlay
# color_mask = cv2.applyColorMap((mask_region * 255).astype(np.uint8), cv2.COLORMAP_JET)
# Ensure shapes match before blending
vis_region = vis_frame[min_y:max_y, min_x:max_x]
# Remove blending with color_mask
# if vis_region.shape[:2] == color_mask.shape[:2]:
# blended = cv2.addWeighted(vis_region, 0.7, color_mask, 0.3, 0)
# vis_frame[min_y:max_y, min_x:max_x] = blended
# Draw the lower lip polygon
cv2.polylines(vis_frame, [lower_lip_polygon], True, (0, 255, 0), 2)
# Remove the red box
# cv2.rectangle(vis_frame, (min_x, min_y), (max_x, max_y), (0, 0, 255), 2)
# Visualize the feathered mask
feather_amount = max(
1,
min(
30,
(max_x - min_x) // modules.globals.mask_feather_ratio,
(max_y - min_y) // modules.globals.mask_feather_ratio,
),
)
# Ensure kernel size is odd
kernel_size = 2 * feather_amount + 1
feathered_mask = cv2.GaussianBlur(
mask_region.astype(float), (kernel_size, kernel_size), 0
)
feathered_mask = (feathered_mask / feathered_mask.max() * 255).astype(np.uint8)
# Remove the feathered mask color overlay
# color_feathered_mask = cv2.applyColorMap(feathered_mask, cv2.COLORMAP_VIRIDIS)
# Ensure shapes match before blending feathered mask
# if vis_region.shape == color_feathered_mask.shape:
# blended_feathered = cv2.addWeighted(vis_region, 0.7, color_feathered_mask, 0.3, 0)
# vis_frame[min_y:max_y, min_x:max_x] = blended_feathered
# Add labels
cv2.putText(
vis_frame,
"Lower Mouth Mask",
(min_x, min_y - 10),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(255, 255, 255),
1,
)
cv2.putText(
vis_frame,
"Feathered Mask",
(min_x, max_y + 20),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(255, 255, 255),
1,
)
return vis_frame
def process_frame_stream(source_path: str, frame: Frame) -> Frame:
global STREAM_SOURCE_FACE
if modules.globals.map_faces:
result = process_frame_v2(frame)
if result is not None:
return result
else:
return frame # Fallback to original frame if process_frame_v2 returns None
if STREAM_SOURCE_FACE is None:
source_img = cv2.imread(source_path)
if source_img is not None:
STREAM_SOURCE_FACE = get_one_face(source_img)
if STREAM_SOURCE_FACE is not None:
return process_frame(STREAM_SOURCE_FACE, frame)
return frame
def apply_mouth_area(
frame: np.ndarray,
mouth_cutout: np.ndarray,
mouth_box: tuple,
face_mask: np.ndarray,
mouth_polygon: np.ndarray,
) -> np.ndarray:
min_x, min_y, max_x, max_y = mouth_box
box_width = max_x - min_x
box_height = max_y - min_y
if (
mouth_cutout is None
or box_width is None
or box_height is None
or face_mask is None
or mouth_polygon is None
):
return frame
try:
resized_mouth_cutout = cv2.resize(mouth_cutout, (box_width, box_height))
roi = frame[min_y:max_y, min_x:max_x]
if roi.shape != resized_mouth_cutout.shape:
resized_mouth_cutout = cv2.resize(
resized_mouth_cutout, (roi.shape[1], roi.shape[0])
)
color_corrected_mouth = apply_color_transfer(resized_mouth_cutout, roi)
# Use the provided mouth polygon to create the mask
polygon_mask = np.zeros(roi.shape[:2], dtype=np.uint8)
adjusted_polygon = mouth_polygon - [min_x, min_y]
cv2.fillPoly(polygon_mask, [adjusted_polygon], 255)
# Apply feathering to the polygon mask
feather_amount = min(
30,
box_width // modules.globals.mask_feather_ratio,
box_height // modules.globals.mask_feather_ratio,
)
feathered_mask = cv2.GaussianBlur(
polygon_mask.astype(float), (0, 0), feather_amount
)
feathered_mask = feathered_mask / feathered_mask.max()
face_mask_roi = face_mask[min_y:max_y, min_x:max_x]
combined_mask = feathered_mask * (face_mask_roi / 255.0)
combined_mask = combined_mask[:, :, np.newaxis]
blended = (
color_corrected_mouth * combined_mask + roi * (1 - combined_mask)
).astype(np.uint8)
# Apply face mask to blended result
face_mask_3channel = (
np.repeat(face_mask_roi[:, :, np.newaxis], 3, axis=2) / 255.0
)
final_blend = blended * face_mask_3channel + roi * (1 - face_mask_3channel)
frame[min_y:max_y, min_x:max_x] = final_blend.astype(np.uint8)
except Exception as e:
pass
return frame
def create_face_mask(face: Face, frame: Frame) -> np.ndarray:
mask = np.zeros(frame.shape[:2], dtype=np.uint8)
landmarks = face.landmark_2d_106
if landmarks is not None:
# Convert landmarks to int32
landmarks = landmarks.astype(np.int32)
# Extract facial features
right_side_face = landmarks[0:16]
left_side_face = landmarks[17:32]
right_eye = landmarks[33:42]
right_eye_brow = landmarks[43:51]
left_eye = landmarks[87:96]
left_eye_brow = landmarks[97:105]
# Calculate forehead extension
right_eyebrow_top = np.min(right_eye_brow[:, 1])
left_eyebrow_top = np.min(left_eye_brow[:, 1])
eyebrow_top = min(right_eyebrow_top, left_eyebrow_top)
face_top = np.min([right_side_face[0, 1], left_side_face[-1, 1]])
forehead_height = face_top - eyebrow_top
extended_forehead_height = int(forehead_height * 5.0) # Extend by 50%
# Create forehead points
forehead_left = right_side_face[0].copy()
forehead_right = left_side_face[-1].copy()
forehead_left[1] -= extended_forehead_height
forehead_right[1] -= extended_forehead_height
# Combine all points to create the face outline
face_outline = np.vstack(
[
[forehead_left],
right_side_face,
left_side_face[
::-1
], # Reverse left side to create a continuous outline
[forehead_right],
]
)
# Calculate padding
padding = int(
np.linalg.norm(right_side_face[0] - left_side_face[-1]) * 0.05
) # 5% of face width
# Create a slightly larger convex hull for padding
hull = cv2.convexHull(face_outline)
hull_padded = []
for point in hull:
x, y = point[0]
center = np.mean(face_outline, axis=0)
direction = np.array([x, y]) - center
direction = direction / np.linalg.norm(direction)
padded_point = np.array([x, y]) + direction * padding
hull_padded.append(padded_point)
hull_padded = np.array(hull_padded, dtype=np.int32)
# Fill the padded convex hull
cv2.fillConvexPoly(mask, hull_padded, 255)
# Smooth the mask edges
mask = cv2.GaussianBlur(mask, (5, 5), 3)
return mask
def apply_color_transfer(source, target):
"""
Apply color transfer from target to source image
"""
source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype("float32")
target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype("float32")
source_mean, source_std = cv2.meanStdDev(source)
target_mean, target_std = cv2.meanStdDev(target)
# Reshape mean and std to be broadcastable
source_mean = source_mean.reshape(1, 1, 3)
source_std = source_std.reshape(1, 1, 3)
target_mean = target_mean.reshape(1, 1, 3)
target_std = target_std.reshape(1, 1, 3)
# Perform the color transfer
source = (source - source_mean) * (target_std / source_std) + target_mean
return cv2.cvtColor(np.clip(source, 0, 255).astype("uint8"), cv2.COLOR_LAB2BGR)

View File

@ -38,6 +38,39 @@ def run_ffmpeg(args: List[str]) -> bool:
return False
def start_ffmpeg_writer(width: int, height: int, fps: float, output_path: str) -> subprocess.Popen:
# Pass all arguments as a list to avoid shell injection
commands = [
"ffmpeg",
"-hide_banner",
"-hwaccel",
"auto",
"-loglevel",
str(modules.globals.log_level),
"-f",
"rawvideo",
"-pix_fmt",
"bgr24",
"-s",
f"{width}x{height}",
"-r",
str(fps),
"-i",
"-",
"-c:v",
str(modules.globals.video_encoder),
"-crf",
str(modules.globals.video_quality),
"-pix_fmt",
"yuv420p",
"-vf",
"colorspace=bt709:iall=bt601-6-625:fast=1",
"-y",
str(output_path),
]
return subprocess.Popen(commands, stdin=subprocess.PIPE)
def detect_fps(target_path: str) -> float:
command = [
"ffprobe",